• Title/Summary/Keyword: incompressible viscous flow

Search Result 188, Processing Time 0.022 seconds

Hall Effect on Unsteady Hartmann Flow with Heat Transfer Under Exponential Decaying Pressure Gradient

  • Attia Hazem A.
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.8
    • /
    • pp.1302-1308
    • /
    • 2006
  • The unsteady Hartmann flow of an electrically conducting, viscous, incompressible fluid bounded by two parallel non-conducting porous plates is studied with heat transfer taking the Hall effect into consideration. An external uniform magnetic field and a uniform suction and injection are applied perpendicular to the plates while the fluid motion is subjected to an exponential decaying pressure gradient. The two plates are kept at different but constant temperatures while the Joule and viscous dissipations are included in the energy equation. The effect of the ion slip and the uniform suction and injection on both the velocity and temperature distributions is examined.

Stable Anisotropic Freezing Modeling Technique Using the Interaction between IISPH Fluids and Ice Particles (안정적이고 이방성한 빙결 모델링을 위한 암시적 비압축성 유체와 얼음 입자간의 상호작용 기법)

  • Kim, Jong-Hyun
    • Journal of the Korea Computer Graphics Society
    • /
    • v.26 no.5
    • /
    • pp.1-13
    • /
    • 2020
  • In this paper, we propose a new method to stable simulation the directional ice shape by coupling of freezing solver and viscous water flow. The proposed ice modeling framework considers viscous fluid flow in the direction of ice growth, which is important in freezing simulation. The water simulation solution uses the method of applying a new viscous technique to the IISPH(Implicit incompressible SPH) simulation, and the ice direction and the glaze effect use the proposed anisotropic freezing solution. The condition in which water particles change state to ice particles is calculated as a function of humidity and new energy with water flow. Humidity approximates a virtual water film on the surface of the object, and fluid flow is incorporated into our anisotropic freezing solution to guide the growth direction of ice. As a result, the results of the glaze and directional freezing simulations are shown stably according to the flow direction of viscous water.

NUMERICAL STUDY ON TWO-DIMENSIONAL INCOMPRESSIBLE VISCOUS FLOW BASED ON GRIDLESS METHOD (2차원 비압축성 점성유동에 관한 무격자법 기반의 수치해석)

  • Jeong, S.M.;Park, J.C.;Heo, J.K.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.239-244
    • /
    • 2009
  • The gridless (or meshfree) methods, such as MPS, SPH, FPM an so forth, are feasible and robust for the problems with moving boundary and/or complicated boundary shapes, because these methods do not need to generate a grid system. In this study, a gridless solver, which is based on the combination of moving least square interpolations on a cloud of points with point collocation for evaluating the derivatives of governing equations, is presented for two-dimensional unsteady incompressible Navier-Stokes problem in the low Reynolds number. A MAC-type algorithm was adopted and the Poission equation for the pressure was solved by successively in the moving least square sense. Some weighing functions were tested in order to investigate the up-winding effect for the convection term. Some typical problems were solved by the presented solver for the validation and the results obtained were compared with analytic solutions and the numerical results by conventional CFD methods, such as FVM.

  • PDF

Computation of Viscous Flows around a Two-dimensional Oscillating Airfoil ( Part 2. with Dynamic Stall ) (진동하는 2차원 날개 단면 주위에 대한 점성 유동장 계산( Part 2. 동적실속이 발생하는 경우 ))

  • Lee, Pyoung-Kuk;Kim, Hyoung-Tae
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.1 s.151
    • /
    • pp.16-25
    • /
    • 2007
  • Studies of unsteady-airfoil flows have been motivated mostly by efforts to avoid. or reduce such undesirable effects as flutter, noise and vibrations, dynamic stall. In this paper, we carry out a computational study of viscous flows around a two-dimensional oscillating airfoil to investigate unsteady effects in these important and challenging flows. A fully implicit incompressible RANS solver has been used for calculating unsteady viscous flows around an airfoil. The cell-centered End order finite volume method is utilized to discretize governing equations. in order to ease the flow computation for fluid region changing in time, improve the qualify of solution and simplify the grid generation for an oscillating airfoil flow, the computational method adopts a moving and deforming grid generation technique based on the multi-block grid topology. The numerical method is applied for calculating viscous flows of an oscillating NACA 0012 in uniform flow. The computational results are compared with available experimental data. Computed results are compared with experimental data and flow characteristics of the experiment are reproduced well In the computed results.

Incompressible Viscous Flow Analysis around a High-Speed Train Including Cross-Wind Effects (측풍영향을 고려한 고속전철 주위의 비압축성 점성 유동 해석)

  • Jung Y. R.;Park W. G.;Kim H. W.;Ha S. D.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.55-63
    • /
    • 1995
  • The flow field around a high-speed train including cross-wind effects has been simulated. This study solves 3-D unsteady incompressible Navier-Stokes equations in the inertial frame using the iterative time marching scheme. The governing equations are differenced with 1st-order accurate backward difference scheme for the time derivatives, 3th-order accurate QUICK scheme for the convective terms and 2nd-order accurate central difference scheme for the viscous terms. The Marker-and-Cell concept was applied to efficiently solve continuity equation, which is differenced with 2nd-order accurate central difference scheme. The 4th-order artificial damping is added to the continuity equation for numerical stability. A C-H type of elliptic grid system is generated around a high-speed train including ground. The Baldwin-Lomax turbulent model was implemented to simulate the turbulent flows. To validate the present procedure, the flow around a high speed train at constant yaw angle of $45^{\circ}\;and\;90^{\circ}$ has been simulated. The simulation shows 3-D vortex generation in the lee corner. The flow separation is also observed around the rear of the train. It has concluded that the results of present study properly agree with physical flow phenomena.

  • PDF

Numerical Analysis of Centrifugal Impeller for Different Viscous Liquids

  • Bellary, Sayed Ahmed Imran;Samad, Abdus
    • International Journal of Fluid Machinery and Systems
    • /
    • v.8 no.1
    • /
    • pp.36-45
    • /
    • 2015
  • Oil and gas industry pumps viscous fluids and investigation of flow physics is important to understand the machine behavior to deliver such fluids. 3D numerical flow simulation and analysis for different viscous fluids at different rotational speeds of a centrifugal impeller have been reported in this paper. Reynolds-averaged Navier Stokes (RANS) equations were solved and the performance analysis was made. Standard two equation k-${\varepsilon}$ model was used for the turbulence closure of steady incompressible flow. An inlet recirculation and reverse flow in impeller passage was observed at low impeller speeds. It was also found that the higher viscosity fluids have higher recirculation which hinders the impeller performance.

A solution method for the pressure-based boundary condition in the computation of two-dimensional incompressible viscous flow (2차원 비압축성 점성유동에 나타나는 압력 경계조건의 해결방안)

  • 이재헌
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.4
    • /
    • pp.926-933
    • /
    • 1988
  • A Numerical method has been introduced to handle a pressure-based boundary condition of the incompressible viscous flow field. This method, based on SIMPLER algorithm, has been applied to analyze the flow characteristics within a two-dimensional duct of two-exit, as an example. From this, it is possible to determine the ratio of flow rate through two exits imposed on different static pressure. In order to check the validity of the present method, calculated velocity at the boundary imposed on pressure condition by the use of present method has been transferred to the velocity boundary condition of the conventional numerical method workable only with the velocity-based boundary condition. It is found that the calculated boundary pressure from conventional method are almost identical to those endowed originally. Present method, therefore will be widely applicable to the practical situations specified by the pressure-based boundary condition rather than the velocity one.

CHARACTERISTICS OF INTERFACE BETWEEN TWO-PHASE FLUIDS FLOW IN A FURNACE WITH POROUS MEDIUM (다공성 매질이 존재하는 용광로 내부 이상유체 경계면의 특성)

  • Park, G.M.;Lee, D.J.;Lee, J.H.;Yoon, H.S.
    • Journal of computational fluids engineering
    • /
    • v.21 no.1
    • /
    • pp.110-116
    • /
    • 2016
  • The present study numerically investigated the deformation of the interface of two-phase fluids flow in a blast furnace. To simulate three-dimensional(3D) incompressible viscous two-phase flow in the furnace filled with the air and molten iron, the volume of fluid(VOF) method based on the finite volume method has been utilized. In addition, the porous medium with the porosity has been considered as the bed of the particles such as cokes and char etc. For the comparison, the single phase flow and the two-phase flow without the porosity have been simulated. The two-phase flow without porosity condition revealed the smooth parabolic profile of the free surface near the outlet. However, the free surface under the porosity condition formed the viscous finger when the free surface was close to the outlet. This viscous finger accelerated the velocity of the free surface falling and the outflow velocity of the fluids near the outlet.

Incompressible/Compressible Flow Analysis over High-Lift Airfoil Using Two-Equation Turbulence Models (2-방정식 난류모델을 이용한 고양력 익형 주위의 비압축성/압축성 유동장 해석)

  • Kim Chang-Seong;Kim Jong-Am;No O Hyeon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.11a
    • /
    • pp.90-95
    • /
    • 1998
  • The two-dimensional incompressible and compressible Navier-Stokes codes are developed for the computation of the viscous turbulent flow over high-lift airfoils. Incompressible code using pseudo-compressibility and dual-time stepping method involves a conventional upwind differencing scheme for the convective terms and LU-SGS scheme for time integration. Compressible code also adopts an FDS scheme and LU-SGS scheme. Several two-equation turbulence models (the standard $k-{\varepsilon}$ model, the $k-{\omega}$ model. and $k-{\omega}$ SST model) are evaluated by computing the flow over single and multi-element airfoils. The compressible and incompressible codes are validated by computing the flow around the transonic RAE2822 airfoil and the NACA4412 airfoil, respectively. Both the results show a good agreement with experimental surface pressure coefficients and velocity profiles in the boundary layers. Also, the GA(W)-1 single airfoil and the NLR7301 airfoil with a flap are computed using the two-equation turbulence models. The grid systems around two- and three-element airfoil are efficiently generated using Chimera grid scheme, one of the overlapping grid generation methods.

  • PDF

Simulation of Viscous Flow Past NACA 0012 Poil using a Vortex Particle Method (보오텍스 방법에 의한 순간 출발하는 2차원 날개 주위의 점성유동 모사)

  • Lee S. J.;Kim K. S.;Suh J. C.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.03a
    • /
    • pp.161-165
    • /
    • 2004
  • In the vortex particle method based on the vorticity-velocity formulation for solving the Wavier-Stokes equations, the unsteady, incompressible, viscous laminar flow over a NACA 0012 foil is simulated. By applying an operator-splitting method, the 'convection' and 'diffusion' equations are solved sequentially at each time step. The convection equation is solved using the vortex particle method, and the diffusion equation using the particle strength exchange(PSE) scheme which is modified to avoid a spurious vorticity flux. The scheme is improved for variety body shape using one image layer scheme. For a validation of the present method, we illustrate the early development of the viscous flow about an impulsively started NACA 0012 foil for Reynolds number 550.

  • PDF