• Title/Summary/Keyword: incompressible Navier-Stokes equations

Search Result 292, Processing Time 0.024 seconds

NUMERICAL PROPERTIES OF GAUGE METHOD FOR THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS

  • Pyo, Jae-Hong
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.14 no.1
    • /
    • pp.43-56
    • /
    • 2010
  • The representative numerical algorithms to solve the time dependent Navier-Stokes equations are projection type methods. Lots of projection schemes have been developed to find more accurate solutions. But most of projection methods [4, 11] suffer from inconsistency and requesting unknown datum. E and Liu in [5] constructed the gauge method which splits the velocity $u=a+{\nabla}{\phi}$ to make consistent and to replace requesting of the unknown values to known datum of non-physical variables a and ${\phi}$. The errors are evaluated in [9]. But gauge method is not still obvious to find out suitable combination of discrete finite element spaces and to compute boundary derivative of the gauge variable ${\phi}$. In this paper, we define 4 gauge algorithms via combining both 2 decomposition operators and 2 boundary conditions. And we derive variational derivative on boundary and analyze numerical results of 4 gauge algorithms in various discrete spaces combinations to search right discrete space relation.

MQUICK Upwind Scheme for the Incompressible Navier-Stokes Equations (비압축성 Navier-Stokes 방정식의 해석을 위한 MQUICK 상류해법)

  • Shin B. R.;Ikohagi T.
    • Journal of computational fluids engineering
    • /
    • v.4 no.1
    • /
    • pp.41-52
    • /
    • 1999
  • 이 논문에서는, QUICK해법의 불안정성을 개량하므로써, 수치계산에 있어서 수렴이 빠르고, 수치적으로 안정한 계산을 할 수 있는 새로운 MQUICK 상류해법을 제안하고, 이를 비압축성 층류유동의 계산에 적용하였다. 또한, 해법의 정확성, 안정성, 수렴속도에 대한 검토를 통하여 본 MQUICK 상류해법의 유효성과 타당성이 평가되었다. 이 해법에서는 인공산일의 가감을 조절하기 위하여 가중계수 α를 써서 정식화 하였고, 위의 검토를 통하여 α의 최적값을 조사하였다. 이 해법을 SMAC 음해법에 적용하여 2 차원 공동유동, 3 차원 덕트유동과 같은 몇몇 표준문제를 계산하고, 계산된 결과를 실험값 또는, 3 차 정확도의 상류해법 및 QUICK해법에 의한 결과 들과 비교 하므로써, 본 MQUICK 상류해법이 위의 다른 해법에 비하여 안정하고, 유효성이 높은 해법임을 확인 하였다.

  • PDF

ASYMPTOTIC BEHAVIORS OF SOLUTIONS FOR AN AEROTAXIS MODEL COUPLED TO FLUID EQUATIONS

  • CHAE, MYEONGJU;KANG, KYUNGKEUN;LEE, JIHOON
    • Journal of the Korean Mathematical Society
    • /
    • v.53 no.1
    • /
    • pp.127-146
    • /
    • 2016
  • We consider a coupled system of Keller-Segel type equations and the incompressible Navier-Stokes equations in spatial dimension two. We show temporal decay estimates of solutions with small initial data and obtain their asymptotic profiles as time tends to infinity.

Application of the Krylov Subspace Method to the Incompressible Navier-Stokes Equations (비압축성 Navier-Stokes 방정식에 대한 Krylov 부공간법의 적용)

  • Maeng, Joo-Sung;Choi, IL-Kon;Lim, Youn-Woo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.7
    • /
    • pp.907-915
    • /
    • 2000
  • The preconditioned Krylov subspace methods were applied to the incompressible Navier-Stoke's equations for convergence acceleration. Three of the Krylov subspace methods combined with the five of the preconditioners were tested to solve the lid-driven cavity flow problem. The MILU preconditioned CG method showed very fast and stable convergency. The combination of GMRES/MILU-CG solver for momentum and pressure correction equations was found less dependency on the number of the grid points among them. A guide line for stopping inner iterations for each equation is offered.

A PARALLEL IMPLEMENTATION OF A RELAXED HSS PRECONDITIONER FOR SADDLE POINT PROBLEMS FROM THE NAVIER-STOKES EQUATIONS

  • JANG, HO-JONG;YOUN, KIHANG
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.22 no.3
    • /
    • pp.155-162
    • /
    • 2018
  • We describe a parallel implementation of a relaxed Hermitian and skew-Hermitian splitting preconditioner for the numerical solution of saddle point problems arising from the steady incompressible Navier-Stokes equations. The equations are linearized by the Picard iteration and discretized with the finite element and finite difference schemes on two-dimensional and three-dimensional domains. We report strong scalability results for up to 32 cores.

Extension of Incompressible Flow Solver Algorithm to Analyze Compressible Flowfield (비압축성 유동해석 알고리듬 확장을 통한 압축성 유동장 해석)

  • Lim, Yeong-Taek;Kim, Moon-Sang
    • Journal of Aerospace System Engineering
    • /
    • v.2 no.2
    • /
    • pp.20-27
    • /
    • 2008
  • The characteristics of compressible flow are different from those of incompressible flow from the mathematical and physical point of view. Therefore, the way to solve the flowfield is different between compressible flow and incompressible flow. In general, density-based numerical algorithm is mainly used for compressible flow solver development. On the other hand, incompressible flow solver prefers to use pressure-based numerical algorithm. In this research, a compressible Navier-Stokes flow solver is developed by means of extending from pressure-based incompressible numerical algorithm to handle both compressible and incompressible flows using the same flow solver. The present flow solver is tested at various speed ranges and compared with the solutions of density-based compressible flow solver. Numerical results show a good agreement between two flow solvers.

  • PDF

ROTATION IMPLEMENTATION OF A CIRCULAR CYLINDER IN INCOMPRESSIBLE FLOW VIA STAGGERED GRID APPROACH

  • Xiao Mingqing;Lin Yuan;Myatt James H.;Camphouse R. Chris;Banda Siva S.
    • Journal of applied mathematics & informatics
    • /
    • v.22 no.1_2
    • /
    • pp.67-82
    • /
    • 2006
  • In this paper, we present a finite difference method for the implementation of the rotation of a circular cylinder in the incompressible flow field by solving the two-dimensional unsteady Navier-Stokes equations. The approach is to use staggered grid method so that the accuracy and order of convergence of the associated algorithms can be maintained. The proposed method is easy to be implemented and is effective. A set of simulations for the flow dynamics is provided to show the computational results.

OPTIMAL ERROR ESTIMATE FOR SEMI-DISCRETE GAUGE-UZAWA METHOD FOR THE NAVIER-STOKES EQUATIONS

  • Pyo, Jae-Hong
    • Bulletin of the Korean Mathematical Society
    • /
    • v.46 no.4
    • /
    • pp.627-644
    • /
    • 2009
  • The gauge-Uzawa method which has been constructed in [11] is a projection type method to solve the evolution Navier-Stokes equations. The method overcomes many shortcomings of projection methods and displays superior numerical performance [11, 12, 15, 16]. However, we have obtained only suboptimal accuracy via the energy estimate in [11]. In this paper, we study semi-discrete gauge-Uzawa method to prove optimal accuracy via energy estimate. The main key in this proof is to construct the intermediate equation which is formed to gauge-Uzawa algorithm. We will estimate velocity errors via comparing with the intermediate equation and then evaluate pressure errors via subtracting gauge-Uzawa algorithm from Navier-Stokes equations.

IMPLEMENTATION OF IMMERSED BOUNDARY METHOD TO INCOMPRESSIBLE NAVIER-STOKES SOLVER USING SIMPLE ALGORITHM (SIMPLE Algorithm기반의 비압축성 Navier-Stokes Solver를 이용한 Immersed Boundary Method의 적용)

  • Kim, G.H.;Park, S.O.
    • Journal of computational fluids engineering
    • /
    • v.17 no.1
    • /
    • pp.44-53
    • /
    • 2012
  • Immersed boundary method(IBM) is a numerical scheme proposed to simulate flow field around complex objectives using simple Cartesian grid system. In the previous studies, the IBM has mostly been implemented to fractional step method based Navier-Stokes solvers. In this study, we implement the IBM to an incompressible Navier-Stokes solver which uses SIMPLE algorithm. The weight coefficients of the bi-linear and quadratic interpolation equations were formulated by using only geometric information of boundary to reconstruct velocities near IB. Flow around 2D circular cylinder at Re=40 and 100 was solved by using these formulations. It was found that the pressure buildup was not observed even when the bi-linear interpolation was adopted. The use of quadratic interpolation made the predicted aerodynamic forces in good agreement with those of previous studies. For an analysis of moving boundary, we smulated an oscillating circular cylinder with Re=100 and KC(Keulegan-Carpenter) number of 5. The predicted flow fields were compared with experimental data and they also showed good agreements.

AN ENERGY-STABLE AND SECOND-ORDER ACCURATE METHOD FOR SOLVING THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS

  • KIM, JEONGHO;JUNG, JINWOOK;PARK, YESOM;MIN, CHOHONG;LEE, BYUNGJOON
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.23 no.2
    • /
    • pp.93-114
    • /
    • 2019
  • In this article, we introduce a finite difference method for solving the Navier-Stokes equations in rectangular domains. The method is proved to be energy stable and shown to be second-order accurate in several benchmark problems. Due to the guaranteed stability and the second order accuracy, the method can be a reliable tool in real-time simulations and physics-based animations with very dynamic fluid motion. We first discuss a simple convection equation, on which many standard explicit methods fail to be energy stable. Our method is an implicit Runge-Kutta method that preserves the energy for inviscid fluid and does not increase the energy for viscous fluid. Integration-by-parts in space is essential to achieve the energy stability, and we could achieve the integration-by-parts in discrete level by using the Marker-And-Cell configuration and central finite differences. The method, which is implicit and second-order accurate, extends our previous method [1] that was explicit and first-order accurate. It satisfies the energy stability and assumes rectangular domains. We acknowledge that the assumption on domains is restrictive, but the method is one of the few methods that are fully stable and second-order accurate.