• Title/Summary/Keyword: in-situ production

Search Result 365, Processing Time 0.027 seconds

A Basic Study of Dynamic Simulation Model for In-situ Production and Erection of Precast Concrete Members (PC의 현장생산-설치 통합관리를 위한 동적 시뮬레이션 모델 기초연구)

  • Son, Seung-Hyun;Kim, Ki-Ho;Kim, Sun-Kuk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.11a
    • /
    • pp.42-43
    • /
    • 2019
  • In-situ production of PC (precast concrete) members can reduce costs by about 14.5% -21.6% compared to in-plant production due to the reduction of transportation costs, factory profits and overhead costs. However, in-situ production of PC members presents a variety of risks, including member production and yard area securing, and lead time for production within the installation period. To solve this, it is necessary be able to analyze and control and monitor the risk factors that influence in-situ production for PC member. The purpose of this study is to develop a dynamic simulation model for in-situ production and erection integrated management for PC members. For this study, risk factor identification, causal loop diagram, and dynamic simulation model construction were performed sequentially. The results of this study will be used as a basis for developing a risk management model for PC in-situ production.

  • PDF

Study on Development of Steam Curing Method for In-situ production of Precast Concrete members (프리캐스트 콘크리트 부재의 현장생산용 증기 양생 방법 개발 연구)

  • Sung, Soojin;Lim, Chaeyeon;Kim, Sunkuk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.71-72
    • /
    • 2014
  • Green Frame is a building frame system to construct a column-beam structure using composite precast concrete members. To reduce the cost of producing precast concrete, in-situ production of members is required. However, when the structural members are produced on site, it needs a large space for production. So, "Just-In-Time" production method should be adopted. For Just-In-Time to be realized, the early strength of members should be ensured for them to be transported. Thus, steam curing to secure the early strength is applied in Green Frame. Yet, a large-scale steam curing system is not possible for in-situ production of precast concrete. A smaller steam curing system is needed. In this regard, the study is aimed to develop a new steam curing method applicable to the in-situ production of precast concrete.

  • PDF

A Process for Structural Design of Form System for in-situ Production of Green Frame (그린프레임 현장생산용 거푸집 시스템 개발을 위한 구조설계 절차)

  • Lim, Chae-Yeon;Kim, Keun-Ho;Na, Young-Ju;Kim, Sun-Kuk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.05a
    • /
    • pp.29-30
    • /
    • 2012
  • The precast concrete column-beam structure, Green Frame, allows the main structural members such as precast concrete column and beam to be produced on the site, resulting in a reduction of transportation cost and the margin of plant. However, existing plywood from for in-situ production of precast concrete members has problems like putting in inordinate human resource, falling-off in quality and workability. To solve those problems, form system for in-situ production of precast concrete members shall be developed. In this regard, this study aims to analyze the structural concept of from system for in-situ production. The result of this study will use for development of form system for in-situ production.

  • PDF

Development of Risk Evaluation Checklist for In-Situ Production of Precast Concrete Members (기성콘크리트 부재의 현장생산 리스크 평가를 위한 체크리스트 개발)

  • Lim, Jeeyoung;Jeong, Hee Woong;Kim, Dae Young
    • Journal of the Korea Institute of Building Construction
    • /
    • v.21 no.5
    • /
    • pp.445-457
    • /
    • 2021
  • In previous studies, it was confirmed that through the in-situ production of precast concrete members, costs could be reduced by 14.5-39.4% compared to in-plant production. In particular, it was confirmed that the factory owner did not make a contract if it did not earn more than 20% of the production cost. If precast concrete members are produced in-situ under the same conditions, the quality equivalent to that of factory production can be secured. As it is advantageous in terms of cost and quality, precast concrete members must be produced in-situ. However, it is difficult to produce all quantities in-situ due to time and various other constraints. This is because in-situ production is avoided due to anticipated risks during the project management process. However, if the risk factors are analyzed before performing in-situ production of precast concrete members, it will increase the opportunity for in-situ production. Therefore, this study develops a checklist for evaluating the risk of in-situ production of precast concrete members. By applying the checklist to one case site, it was verified that risk factors can be evaluated easily and quickly. As a result, it was analyzed that sites with a high building coverage ratio are classified as high-risk sites because it is difficult to secure usable area for production and storage. The developed checklist efficiently evaluates the risk factors of in-site production, and makes it possible for the operator to determine the risk factors, which can change frequently during project execution, and respond according to the situation.

Basic study for time analysis of insitu production of composite precast concrete members using linear scheduling method (LSM을 사용한 합성 PC 부재의 현장생산 공기 산정 기초연구)

  • Lim, Chaeyeon;Kim, Sunkuk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.92-93
    • /
    • 2014
  • Green Frame is a method for Rahmen structure construction composed of composite PC members. The composite PC members of Green Frame which are based on in-situ production can reduce the construction cost and are more likely to secure quality when compared to production in factories. Previous studies developed forms for in-situ production of Green Frame composite PC members and proposed algorithms to arrange them on site. However, it requires not only their arrangement, but also calculation of an accurate production period to produce the required PC members in a limited space and supply them in a timely manner. In particular, it is necessary to clearly define the properties of detailed processes for in-situ production of PC members and to calculate the time required for respective process. To do so, this study is a basic research on calculating the time for in-situ production using a linear scheduling method.

  • PDF

A Base Study on In-situ Production Layout of Free-form Concrete panels by System Dynamic (동적 분석기법을 이용한 비정형 콘크리트 패널의 현장생산 배치 기초연구)

  • Lim, Jeeyoung;Lee, Taick-Oun;Kim, Sunkuk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.05a
    • /
    • pp.154-155
    • /
    • 2016
  • Although there is an increase in demand for free-form buildings, there are several problems such as increased cost and duration and decreased constructability arising from difficult member production and installation. To solve these problems, a technology to produce free-form panels using CNC machine was developed. According to the technology, the information on free-form buildings designed is delivered to the CNC machine, a form is shaped using the delivered information and free-form concrete panels are produced using the form. The limited construction site, duration and project cost as well as interferences with other work types should be considered upon in-situ production of free-form concrete panels. Thus, the purpose of this study is to conduct a base study on in-situ production layout of free-form concrete panels by system dynamics. With this study, we will discover the causal relationship of influence factors on in-situ production of free-form concrete panels, and improved productivity is expected through the production layout.

  • PDF

Enhanced Production of Digoxin by Digitoxin Biotransformation Using In Situ Adsorption in Digitalis lanata Cell Cultures

  • Hong, Hee-Jeon;Lee, Jong-Eun;Ahn, Ji-Eun;Kim, Dong-Il
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.5
    • /
    • pp.478-483
    • /
    • 1998
  • For the enhanced production of a cardiac glycoside, digoxin, using in situ adsorption by biotransformation from digitoxin in plant cell suspension cultures, selection of proper resins was attempted and the culture conditions were optimized. Among various kinds of resins tested, Amberlite XAD-8 was found to be the best for digoxin production in considering adsorption characteristics as well as the effect on cell growth. Adequate time for resin addition was determined to be 36 h from the beginning of biotransformation and the presence of resins should be as short as possible to increase the productivity. In addition, to prevent the cells from direct contact with resin particles, immobilized systems were designed and examined. Immobilization further improved the advantages of in situ adsorption. It was confirmed that the increase of the contact area for mass transfer was an important factor in utilizing an immobilized system to enhance digoxin production.

  • PDF

In-situ Production Analysis of Composite Precast Concrete Members of Green Frame

  • Lim, Chae-Yeon;Joo, Jin-Kyu;Lee, Goon-Jae;Kim, Sun-Kuk
    • Journal of the Korea Institute of Building Construction
    • /
    • v.11 no.5
    • /
    • pp.501-514
    • /
    • 2011
  • Recently, there have been many cases in which the difficulty of repair and replacement of principal elements in the bearing wall structure for apartment buildings, which is a major part of apartment buildings in Korea, has led to the reconstruction of buildings rather than their remodeling. To address this problem, the Korea government now allows a floor area ratio of up to 20 %, and has relaxed the building height limits to encourage the use of a rahmen structure instead of a bearing wall structure. However, since reinforced concrete rahmen structures have many problems, including higher floor height and greater construction cost, a great deal of research into rahmen composite precast concrete structures have been conducted. Green Frame, one of the developed prototypes, is expected to provide economic benefits through in-situ production for precast concrete column and beam. For in-situ production of composite precast concrete members, a detailed plan for production, curing, and installation is needed. However, it needs to be confirmed that the space is sufficient to produce the precast concrete members on-site before planning those activities. Therefore, this study proposes in-situ production analysis of composite precast concrete members of Green Frame with the evaluation of structural safety and available area on the parking structure. The result of this study shows that the in-situ production of precast concrete members is possible through a case study.

A Basic Study on the Arrangement of In-situ Production Module of the Composite PC Members (합성 PC 부재 현장생산배치에 관한 기초 연구)

  • Lee, Goon-Jae;Joo, Jin-Kyu;Lee, Sung-Ho;Kim, Sun-Kuk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.11a
    • /
    • pp.29-30
    • /
    • 2011
  • A Green Frame is a composite Rahmen precast concrete structure that utilizes the advantages of the steel frame and the reinforced concrete. Compared to bearing wall structure, the precast concrete structure may raise construction cost If the precast concrete members are produced in plant. Thus, if the precast concrete members can be produced in site, the cost-effectiveness and quality shall be increased. Various site conditions must be considered and reviewed to ensure a space for the in-situ production. Therefore, this study focuses on the basic study on the arrangement of in-situ production module of composite precast concrete members.

  • PDF

Comparison of In situ Dry Matter Degradation with In vitro Gas Production of Oak Leaves Supplemented with or without Polyethylene Glycol (PEG)

  • Ozkan, C. Ozgur;Sahin, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.8
    • /
    • pp.1120-1126
    • /
    • 2006
  • Dry matter (DM) degradation of leaves from Quercus cercis, Quercus libari, Quercus branti, and Quercus coccifera was determined using two different techniques: (i) in vitro gas production and (ii) the nylon bag degradability technique. In vitro gas production in the presence or absence of PEG and in situ DM disappearance were measured at 3, 6, 12, 24, 48, 72 and 96 h. In situ and in vitro DM degradation kinetics were described using the equation y = a+b ($1-e^{-ct}$). At all incubation times leaves from Quercus branti incubated with or without PEG gave significantly higher gas production than the other oak leaves except for 3 and 6 h incubation when leaves from Quercus branti without PEG supplementation only gave higher gas production than Quercus cercis and Quercus coccifera. At all incubation times except at 3, 6 and 12 h the DM disappearance from Quercus branti was significantly higher than the other species. Generally, PEG supplementation considerably increased the gas production at all incubation times and estimated parameters such as gas production rate ($c_{gas}$), gas production (ml) from the quickly soluble fraction ($a_{gas}$), gas production (b) from the insoluble fraction, potential gas production (a+b). However, all oak leaves did not give the same response to the PEG supplementation. Although the increase in gas production at 96 h incubation time was 8.9 ml for Quercus libari the increase was 5.5 ml for Quercus coccifera. It was concluded that except at early incubation times the relationships between the two methodologies seem to be sufficiently strong to predict degradability parameters from gas production parameters obtained in the presence or absence of PEG.