• Title/Summary/Keyword: in vitro Differentiation

Search Result 765, Processing Time 0.032 seconds

Osteogenic Differentiation Potential in Parthenogenetic Murine Embryonic Stem Cells

  • Kang, Ho-In;Cha, Eun-Sook;Choi, Young-Ju;Min, Byung-Moo;Roh, Sang-Ho
    • International Journal of Oral Biology
    • /
    • v.33 no.3
    • /
    • pp.91-95
    • /
    • 2008
  • Embryonic stem cells have a pluripotency and a potential to differentiate to all type of cells. In our previous study, we have shown that embryonic stem cells (ESCs) lines can be generated from murine parthenogenetic embryos. This parthenogenetic ESCs line can be a useful stem cell source for tissue repair and regeneration. The defect in full-term development of parthenogenetic ESCs line enables researchers to avoid the ethical concerns related with ESCs research. In this study, we presented the results demonstrating that parthenogenetic ESCs can be induced into osteogenic cells by supplementing culture media with ascorbic acid and $\beta$-glycerophosphate. These cells showed morphologies of osteogenic cells and it was proven by Von Kossa staining and Alizarin Red staining. Expression of marker genes for osteogenic cells (osteopontin, osteonectin, alkaline phosphatase, osteocalcin, bone-sialoprotein, collagen type1, and Cbfa1) also confirmed osteogenic potential of these cells. These results demonstrate that osteogenic cells can be generated from parthenogenetic ESCs in vitro.

Usage of Human Mesenchymal Stem Cells in Cell-based Therapy: Advantages and Disadvantages

  • Kim, Hee Jung;Park, Jeong-Soo
    • Development and Reproduction
    • /
    • v.21 no.1
    • /
    • pp.1-10
    • /
    • 2017
  • The use of human mesenchymal stem cells (hMSCs) in cell-based therapy has attracted extensive interest in the field of regenerative medicine, and it shows applications to numerous incurable diseases. hMSCs show several superior properties for therapeutic use compared to other types of stem cells. Different cell types are discussed in terms of their advantages and disadvantages, with focus on the characteristics of hMSCs. hMSCs can proliferate readily and produce differentiated cells that can substitute for the targeted affected tissue. To maximize the therapeutic effects of hMSCs, a substantial number of these cells are essential, requiring extensive ex vivo cell expansion. However, hMSCs have a limited lifespan in an in vitro culture condition. The senescence of hMSCs is a double-edged sword from the viewpoint of clinical applications. Although their limited cell proliferation potency protects them from malignant transformation after transplantation, senescence can alter various cell functions including proliferation, differentiation, and migration, that are essential for their therapeutic efficacy. Numerous trials to overcome the limited lifespan of mesenchymal stem cells are discussed.

Crystal Structure of β-Carbonic Anhydrase CafA from the Fungal Pathogen Aspergillus fumigatus

  • Kim, Subin;Yeon, Jungyoon;Sung, Jongmin;Jin, Mi Sun
    • Molecules and Cells
    • /
    • v.43 no.9
    • /
    • pp.831-840
    • /
    • 2020
  • The β-class of carbonic anhydrases (β-CAs) are zinc metalloenzymes widely distributed in the fungal kingdom that play essential roles in growth, survival, differentiation, and virulence by catalyzing the reversible interconversion of carbon dioxide (CO2) and bicarbonate (HCO3-). Herein, we report the biochemical and crystallographic characterization of the β-CA CafA from the fungal pathogen Aspergillus fumigatus, the main causative agent of invasive aspergillosis. CafA exhibited apparent in vitro CO2 hydration activity in neutral to weak alkaline conditions, but little activity at acidic pH. The high-resolution crystal structure of CafA revealed a tetramer comprising a dimer of dimers, in which the catalytic zinc ion is tetrahedrally coordinated by three conserved residues (C119, H175, C178) and an acetate anion presumably acquired from the crystallization solution, indicating a freely accessible "open" conformation. Furthermore, knowledge of the structure of CafA in complex with the potent inhibitor acetazolamide, together with its functional intolerance of nitrate (NO3-) ions, could be exploited to develop new antifungal agents for the treatment of invasive aspergillosis.

Segmented Filamentous Bacteria Induce Divergent Populations of Antigen-Specific CD4 T Cells in the Small Intestine

  • Yi, Jaeu;Jung, Jisun;Han, Daehee;Surh, Charles D.;Lee, You Jeong
    • Molecules and Cells
    • /
    • v.42 no.3
    • /
    • pp.228-236
    • /
    • 2019
  • CD4 T cells differentiate into $ROR{\gamma}t/IL$-17A-expressing cells in the small intestine following colonization by segmented filamentous bacteria (SFB). However, it remains unclear whether SFB-specific CD4 T cells can differentiate directly from naïve precursors, and whether their effector differentiation is solely directed towards the Th17 lineage. In this study, we used adoptive T cell transfer experiments and showed that naïve CD4 T cells can migrate to the small intestinal lamina propria (sLP) and differentiate into effector T cells that synthesize IL-17A in response to SFB colonization. Using single cell RT-PCR analysis, we showed that the progenies of SFB responding T cells are not uniform but composed of transcriptionally divergent populations including Th1, Th17 and follicular helper T cells. We further confirmed this finding using in vitro culture of SFB specific intestinal CD4 T cells in the presence of cognate antigens, which also generated heterogeneous population with similar features. Collectively, these findings indicate that a single species of intestinal bacteria can generate a divergent population of antigen-specific effector CD4 T cells, rather than it provides a cytokine milieu for the development of a particular effector T cell subset.

OPB, a water extract from Rehmannia glutinosa Libosch and Eleutherococcus senticosus Max, inhibits osteoclast differentiation and function

  • Kim, Jung-Keun;Kim, Se-Won;Kim, Hae-Young;Lee, Byung-Eui;Ko, Seon-Yle
    • International Journal of Oral Biology
    • /
    • v.32 no.1
    • /
    • pp.23-34
    • /
    • 2007
  • We performed the present study to investigate whether Rehmannia glutinosa Libosch (RG) extracts (RGX) and Eleutherococcus senticosus Max (ES) extracts (ESX) play any roles in bone metabolism. We examined cellular activities of bone cells by measurement of osteoblastic cell viability, osteoprotegerin (OPG) secretion from osteoblasts, osteoclastogenesis, and osteoclastic activity. There is no cytotoxicity from osteoblasts after treatment with RGX and ESX. The secretion of OPG from the osteoblasts showed marked increases after treatment with RGX and ESX. In addition, RGX and ESX treatment decreased the number of tartrate-resistant acid phosphatase-positive multinucleated cells and the resorption areas. RGX and ESX, when mixed at optimal ratios, induced synergic effects, in vitro. OPB, which showed synergic effects, is the extract of natural ingredients RG and ES mixed at a raw material weight ratio of 4 : 1. It can be suspected that extracts of RG and ES mixtures contains active ingredients involved in bone tissue metabolism and may be effective in improving osteoporosis.

Osteogenic potential of adult stem cells from human maxillary sinus membrane by Simvastatin in vitro: preliminary report

  • Yun, Kyoung-In;Kim, Dong-Joon;Park, Je-Uk
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.39 no.4
    • /
    • pp.150-155
    • /
    • 2013
  • Objectives: The objective of this study is to determine the adequate concentration and to evaluate the osteogenic potential of simvastatin in human maxillary sinus membrane-derived stem cells (hSMSC). Materials and Methods: Mesenchymal stem cells derived from the human maxillary sinus membrane were treated with various concentrations of simvastatin. The adequate concentration of simvastatin for osteogenic induction was determined using bone morphogenetic protein (BMP-2). The efficacy of osteogenic differentiation of simavastatin was verified using osteocalcin mRNA, and the mineralization efficacy of hSMSCs and simvastatin treatment was compared with alkaline phosphatase and von Kossa staining. Results: Expression of BMP-2 mRNA and protein was observed after three days and was dependent on the concentration of simvastatin. Expression of osteocalcin mRNA was observed after three days in the $1.0{\mu}M$ simvastatin-treated group. Mineralization was observed after three days in the simvastatin-treated group. Conclusion: These results suggest that simvastatin induces the osteogenic potential of mesenchymal stem cells derived from the human maxillary sinus membrane mucosa.

Artificial gametes from stem cells

  • Moreno, Inmaculada;Miguez-Forjan, Jose Manuel;Simon, Carlos
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.42 no.2
    • /
    • pp.33-44
    • /
    • 2015
  • The generation of artificial gametes is a real challenge for the scientific community today. In vitro development of human eggs and sperm will pave the way for the understanding of the complex process of human gametogenesis and will provide with human gametes for the study of infertility and the onset of some inherited disorders. However, the great promise of artificial gametes resides in their future application on reproductive treatments for all these people wishing to have genetically related children and for which gamete donation is now their unique option of parenthood. This is the case of infertile patients devoid of suitable gametes, same sex couples, singles and those fertile couples in a high risk of transmitting serious diseases to their progeny. In the search of the best method to obtain artificial gametes, many researchers have successfully obtained human germ cell-like cells from stem cells at different stages of differentiation. In the near future, this field will evolve to new methods providing not only viable but also functional and safe artificial germ cells. These artificial sperm and eggs should be able to recapitulate all the genetic and epigenetic processes needed for the correct gametogenesis, fertilization and embryogenesis leading to the birth of a healthy and fertile newborn.

Binding Properties and Structural Predictions of Homeodomain Proteins CDX1/2 and HOXD8

  • Park, So-Young;Jeong, Mi-Suk;Jang, Se-Bok
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.7
    • /
    • pp.2325-2331
    • /
    • 2011
  • Human CDX1 and CDX2 genes play important roles in the regulation of cell proliferation and differentiation in the intestine. Hox genes clustered on four chromosomal regions (A-D) specify positional signaling along the anterior-posterior body axis, including intestinal development. Using glutathione S-transferase (GST) pulldown assays, molecular interaction measurements, and fluorescence measurements, we found that the homeodomains (HDs) of CDX1 and CDX2 directly interact with that of HOXD8 in vitro. CDX1 showed significant affinity for HOXD8, but CDX2 showed weak affinity for HOXD8. Thus far, three-dimensional structures of CDX1/2 and HOXD8 have not been determined. In this study, we developed a molecular docking model by homology modeling based on the structures of other HD members. Proteins with mutations in the HD of CDX1 (S185A, N190A, T194A, and V212A) also bound to the HD of HOXD8. Our study suggests that the HDs of CDX1/2 resemble those of HOXD8, and we provide the first insight into the interaction between the HDs of CDX1/2 proteins and those of HOXD8.

Forced Expression of HoxB4 Enhances Hematopoietic Differentiation by Human Embryonic Stem Cells

  • Lee, Gab Sang;Kim, Byung Soo;Sheih, Jae-hung;Moore, Malcolm AS
    • Molecules and Cells
    • /
    • v.25 no.4
    • /
    • pp.487-493
    • /
    • 2008
  • HoxB4 has been shown to enhance hematopoietic engraftment by hematopoietic stem cells (HSC) from differentiating mouse embryonic stem cell (mESC) cultures. Here we examined the effect of ectopic expression of HoxB4 in differentiated human embryonic stem cells (hESCs). Stable HoxB4-expressing hESCs were established by lentiviral transduction, and the forced expression of HoxB4 did not affect stem cell features. HoxB4-expressing hESC-derived CD34+ cells generated higher numbers of erythroid and blast-like colonies than controls. The number of CD34+ cells increased but CD45+ and KDR+ cell numbers were not significantly affected. When the hESC derived CD34+ cells were transplanted into $NOD/SCID{\beta}2m-/-$ mice, the ectopic expression of HoxB4 did not alter their repopulating capacity. Our findings show that overexpression of HoxB4 in differentiating hESCs increases hematopoietic colony formation and hematopoietic cell formation in vitro, but does not affect in vivo repopulation in adult mice hosts.

CDDO-Me alleviates oxidative stress in human mesenchymal stem cells

  • Cho, Hye Jin;Kim, Tae Min
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.36 no.4
    • /
    • pp.285-291
    • /
    • 2021
  • Mesenchymal stem cells (MSCs) have been recognized as a therapeutic tool for various diseases due to its unique ability for tissue regeneration and immune regulation. However, poor survival during in vitro expansion and after being administrated in vivo limits its clinical uses. Accordingly, protocols for enhancing cell survivability is critical for establishing an efficient cell therapy is needed. CDDO-Me is a synthetic C-28 methyl ester of 2-cyano-3,12-dioxoolean-1,9-dien-28-oic acid, which is known to stimulate nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant response element (ARE) pathway. Herein, report that CDDO-Me promoted the proliferation of MSCs and increased colony forming units (CFU) numbers. No alteration in differentiation into tri-lineage mesodermal cells was found after CDDO-Me treatment. We observed that CDDO-Me treatment reduced the cell death induced by oxidative stress, demonstrated by the augment in the expression of Nrf2-downstream genes. Lastly, CDDO-Me led to the nuclear translocation of NRF2. Our data indicate that CDDO-Me can enhance the functionality of MSCs by stimulating cell survival and increasing viability under oxidative stress.