DOI QR코드

DOI QR Code

Crystal Structure of β-Carbonic Anhydrase CafA from the Fungal Pathogen Aspergillus fumigatus

  • Kim, Subin (School of Life Sciences, Gwangju Institute of Science and Technology (GIST)) ;
  • Yeon, Jungyoon (School of Life Sciences, Gwangju Institute of Science and Technology (GIST)) ;
  • Sung, Jongmin (School of Life Sciences, Gwangju Institute of Science and Technology (GIST)) ;
  • Jin, Mi Sun (School of Life Sciences, Gwangju Institute of Science and Technology (GIST))
  • Received : 2020.08.07
  • Accepted : 2020.09.03
  • Published : 2020.09.30

Abstract

The β-class of carbonic anhydrases (β-CAs) are zinc metalloenzymes widely distributed in the fungal kingdom that play essential roles in growth, survival, differentiation, and virulence by catalyzing the reversible interconversion of carbon dioxide (CO2) and bicarbonate (HCO3-). Herein, we report the biochemical and crystallographic characterization of the β-CA CafA from the fungal pathogen Aspergillus fumigatus, the main causative agent of invasive aspergillosis. CafA exhibited apparent in vitro CO2 hydration activity in neutral to weak alkaline conditions, but little activity at acidic pH. The high-resolution crystal structure of CafA revealed a tetramer comprising a dimer of dimers, in which the catalytic zinc ion is tetrahedrally coordinated by three conserved residues (C119, H175, C178) and an acetate anion presumably acquired from the crystallization solution, indicating a freely accessible "open" conformation. Furthermore, knowledge of the structure of CafA in complex with the potent inhibitor acetazolamide, together with its functional intolerance of nitrate (NO3-) ions, could be exploited to develop new antifungal agents for the treatment of invasive aspergillosis.

Keywords

References

  1. Adams, P.D., Afonine, P.V., Bunkóczi, G., Chen, V.B., Davis, I.W., Echols, N., Headd, J.J., Hung, L.W., Kapral, G.J., Grosse-Kunstleve, R.W., et al. (2010). PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213-221. https://doi.org/10.1107/S0907444909052925
  2. Alterio, V., Hilvo, M., Di Fiore, A., Supuran, C.T., Pan, P., Parkkila, S., Scaloni, A., Pastorek, J., Pastorekova, S., Pedone, C., et al. (2009). Crystal structure of the catalytic domain of the tumor-associated human carbonic anhydrase IX. Proc. Natl. Acad. Sci. U. S. A. 106, 16233-16238. https://doi.org/10.1073/pnas.0908301106
  3. Amich, J., Vicentefranqueira, R., Leal, F., and Calera, J.A. (2010). Aspergillus fumigatus survival in alkaline and extreme zinc-limiting environments relies on the induction of a zinc homeostasis system encoded by the zrfC and aspf2 genes. Eukaryot. Cell 9, 424-437. https://doi.org/10.1128/EC.00348-09
  4. Bahn, Y.S., Cox, G.M., Perfect, J.R., and Heitman, J. (2005). Carbonic anhydrase and CO2 sensing during Cryptococcus neoformans growth, differentiation, and virulence. Curr. Biol. 15, 2013-2020. https://doi.org/10.1016/j.cub.2005.09.047
  5. Capasso, C., De Luca, V., Carginale, V., Cannio, R., and Rossi, M. (2012a). Biochemical properties of a novel and highly thermostable bacterial alpha-carbonic anhydrase from Sulfurihydrogenibium yellowstonense YO3AOP1. J. Enzyme Inhib. Med. Chem. 27, 892-897. https://doi.org/10.3109/14756366.2012.703185
  6. Capasso, C., De Luca, V., Carginale, V., Caramuscio, P., Cavalheiro, C., Cannio, R., and Rossi, M. (2012b). Characterization and properties of a new thermoactive and thermostable carbonic anhydrase. Chem. Eng. Trans. 27, 271-276.
  7. Carter, J.M., Havard, D.J., and Parsons, D.S. (1969). Electrometric assay of rate of hydration of CO2 for investigation of kinetics of carbonic anhydrase. J. Physiol. 204, 60P-62P.
  8. Cronk, J.D., Rowlett, R.S., Zhang, K.Y., Tu, C., Endrizzi, J.A., Lee, J., Gareiss, P.C., and Preiss, J.R. (2006). Identification of a novel noncatalytic bicarbonate binding site in eubacterial beta-carbonic anhydrase. Biochemistry 45, 4351-4361. https://doi.org/10.1021/bi052272q
  9. Del Prete, S., Vullo, D., Fisher, G.M., Andrews, K.T., Poulsen, S.A., Capasso, C., and Supuran, C.T. (2014a). Discovery of a new family of carbonic anhydrases in the malaria pathogen Plasmodium falciparum--the etacarbonic anhydrases. Bioorg. Med. Chem. Lett. 24, 4389-4396. https://doi.org/10.1016/j.bmcl.2014.08.015
  10. Del Prete, S., Vullo, D., Scozzafava, A., Capasso, C., and Supuran, C.T. (2014b). Cloning, characterization and anion inhibition study of the deltaclass carbonic anhydrase (TweCA) from the marine diatom Thalassiosira weissflogii. Bioorg. Med. Chem. 22, 531-537. https://doi.org/10.1016/j.bmc.2013.10.045
  11. Dollery, C.T. (1991). Therapeutic Drugs (Edinburgh; London: Churchill Livingstone).
  12. Dostál, J., Brynda, J., Blaha, J., Machacek, S., Heidingsfeld, O., and Pichová, I. (2018). Crystal structure of carbonic anhydrase CaNce103p from the pathogenic yeast Candida albicans. BMC Struct. Biol. 18, 14. https://doi.org/10.1186/s12900-018-0093-4
  13. Elleuche, S. and Pöggeler, S. (2009). Evolution of carbonic anhydrases in fungi. Curr. Genet. 55, 211-222. https://doi.org/10.1007/s00294-009-0238-x
  14. Elleuche, S. and Pöggeler, S. (2010). Carbonic anhydrases in fungi. Microbiology 156, 23-29. https://doi.org/10.1099/mic.0.032581-0
  15. Emsley, P. and Cowtan, K. (2004). Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126-2132. https://doi.org/10.1107/S0907444904019158
  16. Eriksson, A.E., Jones, T.A., and Liljas, A. (1988). Refined structure of human carbonic anhydrase II at 2.0 A resolution. Proteins 4, 274-282. https://doi.org/10.1002/prot.340040406
  17. Fisher, S.Z., Maupin, C.M., Budayova-Spano, M., Govindasamy, L., Tu, C., Agbandje-McKenna, M., Silverman, D.N., Voth, G.A., and McKenna, R. (2007). Atomic crystal and molecular dynamics simulation structures of human carbonic anhydrase II: insights into the proton transfer mechanism. Biochemistry 46, 2930-2937. https://doi.org/10.1021/bi062066y
  18. Fukasawa, Y., Tsuji, J., Fu, S.C., Tomii, K., Horton, P., and Imai, K. (2015). MitoFates: improved prediction of mitochondrial targeting sequences and their cleavage sites. Mol. Cell. Proteomics 14, 1113-1126. https://doi.org/10.1074/mcp.M114.043083
  19. Götz, R., Gnann, A., and Zimmermann, F.K. (1999). Deletion of the carbonic anhydrase-like gene NCE103 of the yeast Saccharomyces cerevisiae causes an oxygen-sensitive growth defect. Yeast 15, 855-864. https://doi.org/10.1002/(SICI)1097-0061(199907)15:10A<855::AID-YEA425>3.0.CO;2-C
  20. Han, K.H., Chun, Y.H., Figueiredo Bde, C., Soriani, F.M., Savoldi, M., Almeida, A., Rodrigues, F., Cairns, C.T., Bignell, E., Tobal, J.M., et al. (2010). The conserved and divergent roles of carbonic anhydrases in the filamentous fungi Aspergillus fumigatus and Aspergillus nidulans. Mol. Microbiol. 75, 1372-1388. https://doi.org/10.1111/j.1365-2958.2010.07058.x
  21. Huang, S., Hainzl, T., Grundström, C., Forsman, C., Samuelsson, G., and Sauer-Eriksson, A.E. (2011). Structural studies of beta-carbonic anhydrase from the green alga Coccomyxa: inhibitor complexes with anions and acetazolamide. PLoS One 6, e28458. https://doi.org/10.1371/journal.pone.0028458
  22. Innocenti, A., Leewattanapasuk, W., Mühlschlegel, F.A., Mastrolorenzo, A., and Supuran, C.T. (2009). Carbonic anhydrase inhibitors. Inhibition of the beta-class enzyme from the pathogenic yeast Candida glabrata with anions. Bioorg. Med. Chem. Lett. 19, 4802-4805. https://doi.org/10.1016/j.bmcl.2009.06.048
  23. Innocenti, A., Mühlschlegel, F.A., Hall, R.A., Steegborn, C., Scozzafava, A., and Supuran, C.T. (2008). Carbonic anhydrase inhibitors: inhibition of the beta-class enzymes from the fungal pathogens Candida albicans and Cryptococcus neoformans with simple anions. Bioorg. Med. Chem. Lett. 18, 5066-5070. https://doi.org/10.1016/j.bmcl.2008.07.122
  24. Isik, S., Kockar, F., Arslan, O., Guler, O.O., Innocenti, A., and Supuran, C.T. (2008). Carbonic anhydrase inhibitors. Inhibition of the beta-class enzyme from the yeast Saccharomyces cerevisiae with anions. Bioorg. Med. Chem. Lett. 18, 6327-6331. https://doi.org/10.1016/j.bmcl.2008.10.100
  25. Iverson, T.M., Alber, B.E., Kisker, C., Ferry, J.G., and Rees, D.C. (2000). A closer look at the active site of gamma-class carbonic anhydrases: highresolution crystallographic studies of the carbonic anhydrase from Methanosarcina thermophila. Biochemistry 39, 9222-9231. https://doi.org/10.1021/bi000204s
  26. James, P., Isupov, M.N., Sayer, C., Saneei, V., Berg, S., Lioliou, M., Kotlar, H.K., and Littlechild, J.A. (2014). The structure of a tetrameric alpha-carbonic anhydrase from Thermovibrio ammonificans reveals a core formed around intermolecular disulfides that contribute to its thermostability. Acta Crystallogr. D Biol. Crystallogr. 70, 2607-2618. https://doi.org/10.1107/S1399004714016526
  27. Jo, B.H., Seo, J.H., and Cha, H.J. (2014). Bacterial $extremo-{\alpha}- carbonic$ anhydrases from deep-sea hydrothermal vents as potential biocatalysts for CO2 sequestration. J. Mol. Catal. B Enzym. 109, 31-39. https://doi.org/10.1016/j.molcatb.2014.08.002
  28. Kanth, B.K., Jun, S.Y., Kumari, S., and Pack, S.P. (2014). Highly thermostable carbonic anhydrase from Persephonella marina EX-H1: its expression and characterization for CO2-sequestration applications. Process Biochem. 49, 2114-2121. https://doi.org/10.1016/j.procbio.2014.10.011
  29. Kikutani, S., Nakajima, K., Nagasato, C., Tsuji, Y., Miyatake, A., and Matsuda, Y. (2016). Thylakoid luminal theta-carbonic anhydrase critical for growth and photosynthesis in the marine diatom Phaeodactylum tricornutum. Proc. Natl. Acad. Sci. U. S. A. 113, 9828-9833. https://doi.org/10.1073/pnas.1603112113
  30. Kim, S., Kim, N.J., Hong, S., Kim, S., Sung, J., and Jin, M.S. (2019a). The structural basis of the low catalytic activities of the two minor betacarbonic anhydrases of the filamentous fungus Aspergillus fumigatus. J. Struct. Biol. 208, 61-68. https://doi.org/10.1016/j.jsb.2019.07.011
  31. Kim, S., Sung, J., Yeon, J., Choi, S.H., and Jin, M.S. (2019b). Crystal structure of a highly thermostable alpha-carbonic anhydrase from Persephonella marina EX-H1. Mol. Cells 42, 460-469. https://doi.org/10.14348/molcells.2019.0029
  32. Kimber, M.S. and Pai, E.F. (2000). The active site architecture of Pisum sativum beta-carbonic anhydrase is a mirror image of that of alphacarbonic anhydrases. EMBO J. 19, 1407-1418. https://doi.org/10.1093/emboj/19.7.1407
  33. Klengel, T., Liang, W.J., Chaloupka, J., Ruoff, C., Schröppel, K., Naglik, J.R., Eckert, S.E., Mogensen, E.G., Haynes, K., Tuite, M.F., et al. (2005). Fungal adenylyl cyclase integrates CO2 sensing with cAMP signaling and virulence. Curr. Biol. 15, 2021-2026. https://doi.org/10.1016/j.cub.2005.10.040
  34. Lehneck, R., Neumann, P., Vullo, D., Elleuche, S., Supuran, C.T., Ficner, R., and Pöggeler, S. (2014). Crystal structures of two tetrameric beta-carbonic anhydrases from the filamentous ascomycete Sordaria macrospora. FEBS J. 281, 1759-1772. https://doi.org/10.1111/febs.12738
  35. Luca, V.D., Vullo, D., Scozzafava, A., Carginale, V., Rossi, M., Supuran, C.T., and Capasso, C. (2013). An ${\alpha}-carbonic$ anhydrase from the thermophilic bacterium Sulphurihydrogenibium azorense is the fastest enzyme known for the CO2 hydration reaction. Bioorg Med. Chem. 21, 1465-1469. https://doi.org/10.1016/j.bmc.2012.09.047
  36. Maupin, C.M. and Voth, G.A. (2007). Preferred orientations of His64 in human carbonic anhydrase II. Biochemistry 46, 2938-2947. https://doi.org/10.1021/bi062170f
  37. McCoy, A.J., Grosse-Kunstleve, R.W., Adams, P.D., Winn, M.D., Storoni, L.C., and Read, R.J. (2007). Phaser crystallographic software. J. Appl. Crystallogr. 40, 658-674. https://doi.org/10.1107/S0021889807021206
  38. Meldrum, N.U. and Roughton, F.J. (1933). Carbonic anhydrase. Its preparation and properties. J. Physiol. 80, 113-142. https://doi.org/10.1113/jphysiol.1933.sp003077
  39. Mitsuhashi, S., Mizushima, T., Yamashita, E., Yamamoto, M., Kumasaka, T., Moriyama, H., Ueki, T., Miyachi, S., and Tsukihara, T. (2000). X-ray structure of beta-carbonic anhydrase from the red alga, Porphyridium purpureum, reveals a novel catalytic site for CO(2) hydration. J. Biol. Chem. 275, 5521-5526. https://doi.org/10.1074/jbc.275.8.5521
  40. Murshudov, G.N., Vagin, A.A., and Dodson, E.J. (1997). Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240-255. https://doi.org/10.1107/S0907444996012255
  41. Nair, S.K., Krebs, J.F., Christianson, D.W., and Fierke, C.A. (1995). Structural basis of inhibitor affinity to variants of human carbonic anhydrase II. Biochemistry 34, 3981-3989. https://doi.org/10.1021/bi00012a016
  42. Neish, A.C. (1939). Studies on chloroplasts: their chemical composition and the distribution of certain metabolites between the chloroplasts and the remainder of the leaf. Biochem. J. 33, 300-308. https://doi.org/10.1042/bj0330300
  43. Neri, D. and Supuran, C.T. (2011). Interfering with pH regulation in tumours as a therapeutic strategy. Nat. Rev. Drug Discov. 10, 767- 777. https://doi.org/10.1038/nrd3554
  44. Otwinowski, Z. and Minor, W. (1997). Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307-326. https://doi.org/10.1016/S0076-6879(97)76066-X
  45. Pilka, E.S., Kochan, G., Oppermann, U., and Yue, W.W. (2012). Crystal structure of the secretory isozyme of mammalian carbonic anhydrases CA VI: implications for biological assembly and inhibitor development. Biochem. Biophys. Res. Commun. 419, 485-489. https://doi.org/10.1016/j.bbrc.2012.02.038
  46. Ren, P., Chaturvedi, V., and Chaturvedi, S. (2014). Carbon dioxide is a powerful inducer of monokaryotic hyphae and spore development in Cryptococcus gattii and carbonic anhydrase activity is dispensable in this dimorphic transition. PLoS One 9, e113147. https://doi.org/10.1371/journal.pone.0113147
  47. Russo, M.E., Scialla, S., De Luca, V., Capasso, C., Olivieri, G., and Marzocchella, A. (2013). Immobilization of carbonic anhydrase for biomimetic CO2 capture. Chem. Eng. Trans. 32, 1867-1872.
  48. Schlicker, C., Hall, R.A., Vullo, D., Middelhaufe, S., Gertz, M., Supuran, C.T., Mühlschlegel, F.A., and Steegborn, C. (2009). Structure and inhibition of the CO2-sensing carbonic anhydrase Can2 from the pathogenic fungus Cryptococcus neoformans. J. Mol. Biol. 385, 1207-1220. https://doi.org/10.1016/j.jmb.2008.11.037
  49. Silverman, D.N. and Lindskog, S. (1988). The catalytic mechanism of carbonic anhydrase: implications of a rate-limiting protolysis of water. Acc. Chem. Res. 21, 30-36. https://doi.org/10.1021/ar00145a005
  50. Smith, K.S. and Ferry, J.G. (1999). A plant-type (beta-class) carbonic anhydrase in the thermophilic methanoarchaeon Methanobacterium thermoautotrophicum. J. Bacteriol. 181, 6247-6253. https://doi.org/10.1128/JB.181.20.6247-6253.1999
  51. Smith, K.S., Jakubzick, C., Whittam, T.S., and Ferry, J.G. (1999). Carbonic anhydrase is an ancient enzyme widespread in prokaryotes. Proc. Natl. Acad. Sci. U. S. A. 96, 15184-15189. https://doi.org/10.1073/pnas.96.26.15184
  52. Strop, P., Smith, K.S., Iverson, T.M., Ferry, J.G., and Rees, D.C. (2001). Crystal structure of the "cab"-type beta class carbonic anhydrase from the archaeon Methanobacterium thermoautotrophicum. J. Biol. Chem. 276, 10299-10305. https://doi.org/10.1074/jbc.M009182200
  53. Supuran, C.T. (2008). Carbonic anhydrases: novel therapeutic applications for inhibitors and activators. Nat. Rev. Drug Discov. 7, 168-181. https://doi.org/10.1038/nrd2467
  54. Supuran, C.T. (2016). Structure and function of carbonic anhydrases. Biochem. J. 473, 2023-2032. https://doi.org/10.1042/BCJ20160115
  55. West, D., Kim, C.U., Tu, C., Robbins, A.H., Gruner, S.M., Silverman, D.N., and McKenna, R. (2012). Structural and kinetic effects on changes in the CO(2) binding pocket of human carbonic anhydrase II. Biochemistry 51, 9156-9163. https://doi.org/10.1021/bi301155z
  56. Whittington, D.A., Waheed, A., Ulmasov, B., Shah, G.N., Grubb, J.H., Sly, W.S., and Christianson, D.W. (2001). Crystal structure of the dimeric extracellular domain of human carbonic anhydrase XII, a bitopic membrane protein overexpressed in certain cancer tumor cells. Proc. Natl. Acad. Sci. U. S. A. 98, 9545-9550. https://doi.org/10.1073/pnas.161301298
  57. Wilbur, K.M. and Anderson, N.G. (1948). Electrometric and colorimetric determination of carbonic anhydrase. J. Biol. Chem. 176, 147-154. https://doi.org/10.1016/S0021-9258(18)51011-5
  58. Xu, Y., Feng, L., Jeffrey, P.D., Shi, Y., and Morel, F.M. (2008). Structure and metal exchange in the cadmium carbonic anhydrase of marine diatoms. Nature 452, 56-61. https://doi.org/10.1038/nature06636