DOI QR코드

DOI QR Code

Usage of Human Mesenchymal Stem Cells in Cell-based Therapy: Advantages and Disadvantages

  • Kim, Hee Jung (Department of Physiology, Dankook University College of Medicine) ;
  • Park, Jeong-Soo (Department of Biochemistry, Dankook University College of Medicine)
  • Received : 2016.12.22
  • Accepted : 2017.01.02
  • Published : 2017.03.31

Abstract

The use of human mesenchymal stem cells (hMSCs) in cell-based therapy has attracted extensive interest in the field of regenerative medicine, and it shows applications to numerous incurable diseases. hMSCs show several superior properties for therapeutic use compared to other types of stem cells. Different cell types are discussed in terms of their advantages and disadvantages, with focus on the characteristics of hMSCs. hMSCs can proliferate readily and produce differentiated cells that can substitute for the targeted affected tissue. To maximize the therapeutic effects of hMSCs, a substantial number of these cells are essential, requiring extensive ex vivo cell expansion. However, hMSCs have a limited lifespan in an in vitro culture condition. The senescence of hMSCs is a double-edged sword from the viewpoint of clinical applications. Although their limited cell proliferation potency protects them from malignant transformation after transplantation, senescence can alter various cell functions including proliferation, differentiation, and migration, that are essential for their therapeutic efficacy. Numerous trials to overcome the limited lifespan of mesenchymal stem cells are discussed.

Keywords

References

  1. Amps K, Andrews PW, Anyfantis G, Armstrong L, Avery S, Baharvand H, Baker J, Baker D, Munoz MB, Beil S, International Stem Cell Initiative, et al. (2011) Screening ethnically diverse human embryonic stem cells identifies a chromosome 20 minimal amplicon conferring growth advantage. Nat Biotechnol 29:1132-1144. https://doi.org/10.1038/nbt.2051
  2. Atoui R, Chiu RC (2012) Mesenchymal stromal cells as universal donor cells. Expert Opin Biol Ther 12:1293-1297. https://doi.org/10.1517/14712598.2012.711307
  3. Banfi A, Muraglia A, Dozin B, Mastrogiacomo M, Cancedda R, Quarto R (2000) Proliferation kinetics and differentiation potential of ex vivo expanded human bone marrow stromal cells: Implications for their use in cell therapy. Exp Hematol 28:707-715. https://doi.org/10.1016/S0301-472X(00)00160-0
  4. Boyle AJ, Schulman SP, Hare JM, Oettgen P (2006) Is stem cell therapy ready for patients? Stem cell therapy for cardiac repair. ready for the next step. Circulation 114:339-352. https://doi.org/10.1161/CIRCULATIONAHA.105.590653
  5. Bruder SP, Jaiswal N, Haynesworth SE (1997) Growth kinetics, self-renewal, and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation. J Cell Biochem 64:278-294. https://doi.org/10.1002/(SICI)1097-4644(199702)64:2<278::AID-JCB11>3.0.CO;2-F
  6. Burova E, Borodkina A, Shatrova A, Nokolsky N (2013) Sublethal oxidative stress induces the premature senescence of human mesenchymal stem cells derived from endometrium. Oxid Med Cell Longev 2013:474931.
  7. Carpenter L, Carr C, Yang CT, Stuckey DJ, Clarke K, Watt SM (2012) Efficient differentiation of human induced pluripotent stem cells generates cardiac cells that provide protection following myocardial infarction in the rat. Stem Cells Dev 21:977-986. https://doi.org/10.1089/scd.2011.0075
  8. Cheung AY, Horvath LM, Grafodatskaya D, Pasceri P, Weksberg R, Hotta A, Carrel L, Ellis J (2011) Isolation of MECP2-null Rett Syndrome patient hiPS cells and isogenic controls through X-chromosome inactivation. Hum Mol Genet 20:2103-2115. https://doi.org/10.1093/hmg/ddr093
  9. Chong PP, Selvaratnam L, Abbas AA, Kamarul T (2012) Human peripheral blood derived mesenchymal stem cells demonstrate similar characteristics and chondrogenic differentiation potential to bone marrow derived mesenchymal stem cells. J Orthop Res 30:634-642. https://doi.org/10.1002/jor.21556
  10. Crisan M, Yap S, Casteilla L, Chen CW, Corselli M, Park TS, Andriolo G, Sun B, Zheng B, Zhang L, Norotte C, Teng PN, Traas J, Schugar R, Deasy BM, Badylak S, Buhring HJ, Giacobino JP, Lazzari L, Huard J, Peault B (2008) A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 3:301-313. https://doi.org/10.1016/j.stem.2008.07.003
  11. Deans RJ, Moseley AB (2000) Mesenchymal stem cells: biology and potential clinical uses. Exp Hematol 28:875-884. https://doi.org/10.1016/S0301-472X(00)00482-3
  12. Digirolamo CM, Stokes D, Colter D, Phinney DG, Class R, Prockop DJ (1999) Propagation and senescence of human marrow stromal cells in culture: A simple colonyforming assay identifies samples with the greatest potential to propagate and differentiate. Br J Haematol 107:275-281. https://doi.org/10.1046/j.1365-2141.1999.01715.x
  13. Duscher D, Rennert RC, Januszyk M, Anghel E, Maan ZN, Whittam AJ, Perez MG, Kosaraju R, Hu MS, Walmsley GG, Atashroo D, Khong S, Butte AJ, Gurtner GC (2014) Aging disrupts cell subpopulation dynamics and diminishes the function of mesenchymal stem cells. Sci Rep 4:7144.
  14. Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292: 154-156. https://doi.org/10.1038/292154a0
  15. Fahrer C, Brunauer R, Laschober G, Unterluggauer H, Reitinger S, Kloss F, Gully C, Gassner R, Lepperdinger G (2007) Reduced oxygen tension attenuates differentiation capacity of human mesenchymal stem cells and prolongs their lifespan. Aging Cell 6:745-757. https://doi.org/10.1111/j.1474-9726.2007.00336.x
  16. Faiella W, Atoui R (2016) Therapeutic use of stem cells for cardiovascular disease. Clin Transl Med 5:34. https://doi.org/10.1186/s40169-016-0116-3
  17. Gharibi B, Hughes FJ (2012) Effects of medium supplements on proliferation, differentiation potential, and in vitro expansion of mesenchymal stem cells. Stem Cells Transl Med 1:771-782. https://doi.org/10.5966/sctm.2010-0031
  18. Gu Z, Tan W, Ji J, Feng G, Meng Y, Da Z, Guo G, Xia Y, Zhu X, Shi G, Cheng C (2016) Rapamycin reverses the senescent phenotype and improves immunoregulation of mesenchymal stem cells from MRL/lpr mice and systemic lupus erythematosus patients through inhibition of the mTOR signaling pathway. Aging (Albany NY) 8:1102-1114.
  19. Hsuan YC, Lin CH, Chang CP, Lin MT (2016) Mesenchymal stem cell-based treatments for stroke, neural trauma, and heatstroke. Brain Behav 6:e00526. https://doi.org/10.1002/brb3.526
  20. In 't Anker PS, Scherjon SA, Kleijburg-van der Keur C, de Groot-Swings GM, Claas FH, Fibbe WE, Kanhai HH (2004) Isolation of mesenchymal stem cells of fetal or maternal origin from human placenta. Stem Cells 22: 1338-1345. https://doi.org/10.1634/stemcells.2004-0058
  21. In 't Anker PS, Scherjon SA, Kleijburg-van der Keur C, Noort WA, Claas FH, Willemze R, Fibbe WE, Kanhai HH (2003) Amniotic fluid as a novel source of mesenchymal stem cells for therapeutic transplantation. Blood 102:1548-1549. https://doi.org/10.1182/blood-2003-04-1291
  22. Jin Y, Kato T, Furu M, Nasu A, Kajita Y, Mitsui H, Ueda M, Aoyama T, Nakayama T, Nakamura T, Toguchida J (2010) Mesenchymal stem cells cultured under hypoxia escape from senescence via down-regulation of p16 and extracellular signal regulated kinase. Biochem Biophys Res Commun 391:1471-1476. https://doi.org/10.1016/j.bbrc.2009.12.096
  23. Jung EM, Kwon O, Kwon KS, Cho YS, Rhee SK, Min JK, Oh DB (2011) Evidences for correlation between the reduced VCAM-1 expression and hyaluronan synthesis during cellular senescence of human mesenchymal stem cells. Biochem Biophys Res Commun 404:463-469. https://doi.org/10.1016/j.bbrc.2010.12.003
  24. Jung JW, Lee S, Seo MS, Park SB, Kurtz A, Kang SK, Kang KS (2010) Histone deacetylase controls adult stem cell aging by balancing the expression of polycomb genes and jumonji domain containing 3. Cell Mol Life Sci 67:1165-1176. https://doi.org/10.1007/s00018-009-0242-9
  25. Kashino G, Kodama S, Nakayama Y, Suzuki K, Rukase K, Goto M, Watanabe M (2003) Relief of oxidative stress by ascorbic acid delays cellular senescence of normal human and Werner syndrome fibroblast cells. Free Radic Biol Med 35:438-443. https://doi.org/10.1016/S0891-5849(03)00326-5
  26. Kim M, Kim C, Choi YS, Park C, Suh Y (2012) Agerelated alterations in mesenchymal stem cells related to shift in differentiation from osteogenic to adipogenic potential: Implication to age-associated bone diseases and defects. Mech Ageing Dev 133:215-225. https://doi.org/10.1016/j.mad.2012.03.014
  27. Ko E, Lee KY, Hwang DS (2012) Human umbilical cord blood-derived mesenchymal stem cells undergo cellular senescence in response to oxidative stress. Stem Cells Dev 21:1877-1886. https://doi.org/10.1089/scd.2011.0284
  28. Kretlow JD, Jin YQ, Liu W, Zhang WJ, Hong TH, Zhou G, Baggett LS, Mikos AG, Cao Y (2008) Donor age and cell passage affects differentiation potential of murine bone marrow-derived stem cells. BMC Cell Biol 9:60. https://doi.org/10.1186/1471-2121-9-60
  29. Laurent LC, Ulitsky I, Slavin I, Tran H, Schork A, Morey R, Lynch C, Harness JV, Lee S, Barrero MJ, Ku S, Martynova M, Semechkin R, Galat V, Gottesfeld J, Izpisua Belmonte JC, Murry C, Keirstead HS, Park HS, Schmidt U, Laslett AL, Muller FJ, Nievergelt CM, Shamir R, Loring JF (2011) Dynamic changes in the copy number of pluripotency and cell proliferation genes in human ESCs and iPSCs during reprogramming and time in culture. Cell Stem Cell 8:106-118. https://doi.org/10.1016/j.stem.2010.12.003
  30. LeBlanc KT, Tammik C, Rosendahl K, Zetterberg E, Ringden O (2003) HLA expression and immunologic properties of differentiated and undifferentiated mesenchymal stem cells. Exp Hematol 31:890-896. https://doi.org/10.1016/S0301-472X(03)00110-3
  31. Lee H, Shamy GA, Elkabetz Y, Schofield CM, Harrsion NL, Panagiotakos G, Socci ND, Tabar V, Studer L (2007) Directed differentiation and transplantation of human embryonic stem cell-derived motoneurons. Stem Cells 25:1931-1939. https://doi.org/10.1634/stemcells.2007-0097
  32. Liang G, Zhang Y (2013) Genetic and epigenetic variations in iPSCs: potential causes and implications for application. Cell Stem Cell 13:149-159. https://doi.org/10.1016/j.stem.2013.07.001
  33. Limn TM, Tsai JL, Lin SD, Lai CS, Chang CC (2005) Accelerated growth and prolonged lifespan of adipose tissue-derived human mesenchymal stem cells in a medium using reduced calcium and antioxidants. Stem Cells Dev 14:92-102. https://doi.org/10.1089/scd.2005.14.92
  34. Liu D, Hornsby PJ (2007) Senescent human fibroblasts increase the early growth of xenograft tumors via matrix metalloproteinase secretion. Cancer Res 67:3117-3126. https://doi.org/10.1158/0008-5472.CAN-06-3452
  35. Liu Y, Tang SC (2016) Recent Progress in Stem Cell Therapy for Diabetic Nephropathy. Kidney Dis 2:20-27. https://doi.org/10.1159/000441913
  36. Martins-Taylor K, Nisler BS, Taapken SM, Compton T, Crandall L, Montgomery KD, Lalande M, Xu RH (2011) Recurrent copy number variations in human induced pluripotent stem cells. Nat Biotechnol 29:488-491. https://doi.org/10.1038/nbt.1890
  37. Mayshar Y, Ben-David U, Lavon N, Biancotti JC, Yakir B, Clark AT, Plath K, Lowry WE, Benvenisty N (2010) Identification and classification of chromosomal aberrations in human induced pluripotent stem cells. Cell Stem Cell 7:521-531. https://doi.org/10.1016/j.stem.2010.07.017
  38. Minieri V, Saviozzi S, Gambarotta G, Lo Iacono M, Accomasso L, Cibrario Rocchietti E, Gallina C, Turinetto V, Giachino C (2015) Persistent DNA damage-induced premature senescence alters the functional features of human bone marrow mesenchymal stem cells. J Cell Mol Med 19:734-743. https://doi.org/10.1111/jcmm.12387
  39. Monsel A, Zhu YG, Gennal S, Hao Q, Liu J, Lee JW (2015) Preclinical evidence and ongoing clinical trials using mesenchymal stem cells. Anesthesiology 121:1099-1121.
  40. Muthna D, Soukup T, Vavrova J, Mokry J, Cmielova J, Visek B, Jiroutova A, Havelek R, Suchanek J, Filip S, English D, Rezacova M (2010) Irradiation of adult human dental pulp stem cells provokes activation of p53, cell cycle arrest, and senescence but not apoptosis. Stem Cells Dev 19:1855-1862. https://doi.org/10.1089/scd.2009.0449
  41. Nazor KL, Altun G, Lynch C, Tran H, Harness JV, Slavin I, Garitaonandia I, Muller FJ, Wang YC, Boscolo FS, Fakunle E, Dumevska B, Lee S, Park HS, Olee T, D'Lima DD, Semechkin R, Parast MM, Galat V, Laslett AL, Schmidt U, Keirstead HS, Loring JF, Laurent LC (2012) Recurrent variations in DNA methylation in human pluripotent stem cells and their differentiated derivatives. Cell Stem Cell 10:620-634. https://doi.org/10.1016/j.stem.2012.02.013
  42. Park IH, Zhao R, West JA, Yabuuchi A, Huo H, Ince TA, Lerou PH, Lensch MW, Daley GQ (2008) Reprogramming of human somatic cells to pluripotency with defined factors. Nature 451:141-146. https://doi.org/10.1038/nature06534
  43. Park JS, Kim HY, Kim HW, Chae GN, Oh HT, Park JY, Shim H, Seo M, Shin EY, Kim EG, Park SC, Kwak SJ (2005) Increased caveolin-1, a cause for the declined adipogenic potential of senescent human mesenchymal stem cells. Mech Ageing Dev 126:551-559. https://doi.org/10.1016/j.mad.2004.11.014
  44. Pati S, Muthuraju S, Hadi RA, Huat TJ, Singh S, Maletic-Savatic M, Abdullah JM, Jaafar H (2016) Neurogenic plasticity of mesenchymal stem cell, an alluring cellular replacement for traumatic brain injury. Curr Stem Cell Res Ther 11:149-157. https://doi.org/10.2174/1574888X10666151019120050
  45. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143-147. https://doi.org/10.1126/science.284.5411.143
  46. Pittenger MF, Martin BJ (2004) Mesenchymal stem cells and their potential as cardiac therapeutics. Cir Res 95:9-20. https://doi.org/10.1161/01.RES.0000135902.99383.6f
  47. Romanov YA, Svintsitskaya VA, Smirnov VN (2003) Searching for alternative sources of post-natal human mesenchymal stem cells: candidate MSC-like cells from umbilical cord. Stem Cells 21:105-110. https://doi.org/10.1634/stemcells.21-1-105
  48. Sepulveda JC, Tome M, Fernandez ME, Delgado M, Campisi J, Bernad A, Gonzalez MA (2014) Cell Senescence abrogates the therapeutic potential of human mesenchymal stem cells in the lethal endotoxemia model. Stem Cells 32:1865-1877. https://doi.org/10.1002/stem.1654
  49. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663-676. https://doi.org/10.1016/j.cell.2006.07.024
  50. Tang H, Xiang Y, Jiang X, Ke Y, Xiao Z, Guo Y, Wang Q, Du M, Qin L, Zou Y, Cai Y, Chen Z, Xu R (2013) Dual expression of hTERT and VEGF prolongs life span and enhances angiogenic ability of aged BMSCs. Biochem Biophys Res Commun 440:502-508. https://doi.org/10.1016/j.bbrc.2013.09.053
  51. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145-1147 https://doi.org/10.1126/science.282.5391.1145
  52. Tian S, Liu Q, Gnatoxskiy L, Ma PX, Wang Z (2015) Heart regeneration with embryonic cardiac progenitor cells and cardiac tissue engineering. J Stem Cell Transplant Biol 1:104-129
  53. Turinetto V, Vitale E, Giachino C (2016) Senescence in human mesenchymal stem cells: Functional changes and implications in stem cell-based therapy. Int J Mol Sci 17:E1164. https://doi.org/10.3390/ijms17071164
  54. Wagner W, Horn P, Castoldi M, Diehlmann A, Bork S, Saffrich R, Benes V, Blake J, Pfister S, Eckstein V, Ho AD (2008) Replicative senescence of mesenchymal stem cells: a continuous and organized process. PLoS One 3:e2213. https://doi.org/10.1371/journal.pone.0002213
  55. Wang SS, Ren J (2014) Aging as an essential modifier for the efficacy in mesenchymal stem cell therapy through an inositol phosphate 6 kinase-inositolo pyrophosphate 7-dependent mechanism. Stem Cell Res 5:43. https://doi.org/10.1186/scrt432
  56. Wang Y, Han ZB, Song YP, Han ZC (2012) Safety of mesenchymal stem cells for clinical application. Stem Cells Int 2012:652034.
  57. Wutz A (2012) Epigenetic alterations in human pluripotent stem cells: a tale of two cultures. Cell Stem Cell 11:9-15. https://doi.org/10.1016/j.stem.2012.06.012
  58. Xia Y, Nivet E, Sancho-Martinez I, Gallegos T, Suzuki K, Okamura D, Wu MZ, Dubova I, Esteban CR, Montser rat N, Campistol JM, Izpisua Belmonte JC (2013) Directed differentiation of human pluripotent cells to ureteric bud kidney progenitor-like cells. Nat Cell Biol 15: 1507-1515. https://doi.org/10.1038/ncb2872
  59. Young MA, Larson DE, Sun CW, George DR, Ding L, Miller CA, Lin L, Pawlik KM, Chen K, Fan X, Schmidt H, Kalicki-Veizer J, Cook LL, Swift GW, Demeter RT, Wendl MC, Sands MS, Mardis ER, Wilson RK, Townes TM, Ley TJ (2012) Background mutations in parental cells account for most of the genetic heterogeneity of induced pluripotent stem cells. Cell Stem Cell 10:570-582. https://doi.org/10.1016/j.stem.2012.03.002
  60. Zhang J, Ratanasirintrawoot S, Chandrasekaran S, Wu Z, Ficarro SB, Yu C, Ross CA, Cacchiarelli D, Xia Q, Seligson M, Shinoda G, Xie W, Cahan P, Wang L, Ng SC, Tintara S, Trapnell C, Onder T, Loh YH, Mikkelsen T, Sliz P, Teitell MA, Asara JM, Marto JA, Li H, Collins JJ, Daley GQ (2016) LIN28 Regulates stem cell metabolism and conversion to primed pluripotency. Cell Stem Cell 19:66-80. https://doi.org/10.1016/j.stem.2016.05.009
  61. Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, Alfonso ZC, Fraser JK, Benhaim P, Hedrick MH (2002) Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13:4279-4295. https://doi.org/10.1091/mbc.e02-02-0105