• Title/Summary/Keyword: in situ monitoring

Search Result 482, Processing Time 0.027 seconds

Looking through the Mass-to-Charge Ratio: Past, Present and Future Perspectives

  • Shin, Seung Koo
    • Mass Spectrometry Letters
    • /
    • v.12 no.4
    • /
    • pp.126-130
    • /
    • 2021
  • The mass spectrometry (MS) provides the mass-to-charge ratios of atoms, molecules, stable/metastable complexes, and their fragments. I have taken a long journey with MS to address outstanding issues and problems by experiments and theory and gain insights into underlying principles in chemistry. By looking through the mass-to-charge ratio, I have studied thermochemical problems in silicon chemistry, the infrared multiphoton dissociation spectroscopy of organometallic intermediates, unimolecular dissociations of halotoluene radical cations, and the kinetics of association/dissociation of alkali halide triple ions with Lewis bases. Various MS platforms have been used to characterize non-covalent interactions between porphyrins and fullerenes and those between the group IIB ions and trioctylchalcogenides, and to examine the binding of the group IA, IIA and porphyrin ions to G-quadruplex DNA. Recently, I have focused on mass-balanced H/D isotope dipeptide tags for MS-based quantitative proteomics, a simple chemical modification method for MS-based lipase assay, and the kinetics and dynamics of energy-variable collision-induced dissociation of chemically modified peptides. Now, I see an important role of MS in global issues in the post-COVID era, as the society demands high standards for indoor air quality to contain the airborne-pathogen transmission as well as in-situ monitoring and tracking of carbon emissions to reduce global warming.

Electrochemical and surface investigations of copper corrosion in dilute oxychloride solution

  • Gha-Young Kim ;Junhyuk Jang;Jeong-Hyun Woo;Seok Yoon;Jin-Seop Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.8
    • /
    • pp.2742-2746
    • /
    • 2023
  • The corrosion behavior of copper immersed in dilute oxychloride solution (100 mM) was studied through surface investigation and in-situ monitoring of open-circuit potential. The copper corrosion was initiated with copper dissolution into a form of CuCl-2, resulting in mass decrease within the first 40 h of immersion. This was followed by a hydrolysis reaction initiated by the CuCl-2 at the copper surface, after which oxide products were formed and deposited on the surface, resulting in a mass increase. The formation of nucleation sites for copper oxide and its lateral extension during the corrosion process were examined using focused ion beam (FIB)-scanning electron microscopy (SEM). The presence of metastable compounds such as atacamite (CuCl2·3Cu(OH)2) on the corroded copper surface was revealed by X-ray photoelectron spectra (XPS) and transmission electron microscopy (TEM)-energy dispersive spectrometry (EDS) analysis.

An Experiment for determining Electrical Conductivity in Modelholes using Continuous Measurement System (공내수 전기전도도의 자동측정시스템 구축을 위한 실험)

  • 김영화;박정빈;임헌태
    • The Journal of Engineering Geology
    • /
    • v.13 no.3
    • /
    • pp.281-292
    • /
    • 2003
  • We setup a continuous measurement system for electrical conductivity of fluid in a model borehole and verified the basic environments in electrical conductivity measurement for estimating hydraulic constants. The experiment was made by monitoring the conductivity change within the hole using NaCI solution of different salinities and incoming formation fluid using distilled water. The experiment was made under the state of constant flow rate by maintaining balance between inflow and outflow. Conductivity variation features were observed by controlling salinity contrasts and temperature differences between fluid within the hole and incoming formation fluid. flow rate and the location of inlet and outlet. The results of the experiment show well the role of each affecting factor on the conductivity distribution. and suggest appropriate environments for conductivity measurements. It is considered that the basis of the conductivity measurement for henceforward laboratory model and/or in-situ borehole experiment has been prepared.

A Study of ${{\sigma}_v}'-D_r-N$ Correlation using Large Calibration Chamber System (대형 Calibration Chamber System을 이용한 ${{\sigma}_v}'-D_r-N$ 상관관계 연구)

  • Choi, Sung-Kun;Kim, Sang-In;Lee, Chung-Ho;Kim, Dong-Hoo;Lee, Woo-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1175-1182
    • /
    • 2005
  • Using KUCCS, which enables real-time monitoring and controlling, the various boundary condition and in-situ field stress condition was simulated, to derive the correlation among ${{\sigma}_v}'-Dr-N$in domestic sandy soils. Soil specimens, having various relative density and confined stress, were formulated to evaluate N-value from the SPT. and Pile Driving Analyzer, PDA, was employed as a measuring device for the energy transfer efficiency in the rod. From the quantitative analysis of N-value, the correlating equation, $N_{60}/{D_r}^2=16.35+14.45{{\sigma}_v}'$ was obtained on the basis of Skempton's method(1986). More reliable soil parameters can be obtained from the N-value by using this study which considered regional characters and the correlation among ${{\sigma}_v}'-Dr-N$.

  • PDF

High Electrical Current Stressing Effects on the Failure Mechanisms of Austudbumps/ACFFlip Chip Joints (고전류 스트레싱이 금스터드 범프를 이용한 ACF 플립칩 파괴 기구에 미치는 영향)

  • Kim Hyeong Jun;Gwon Un Seong;Baek Gyeong Uk
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2003.11a
    • /
    • pp.195-202
    • /
    • 2003
  • In this study, failure mechanisms of Au stud bumps/ACF flip chip joints were investigated underhigh current stressing condition. For the determination of allowable currents, I-V tests were performed on flip chip joints, and applied currents were measured as high as almost 4.2Amps $(4.42\times10^4\;Amp/cm^2)$. Degradation of flip chip joints was observed by in-situ monitoring of Au stud bumps-Al pads contact resistance. All failures, defined at infinite resistance, occurred at upward electron flow (from PCB pads to chip pads) applied bumps (UEB). However, failure did not occur at downward electron flow applied bumps (DEB). Only several $m\Omega$ contact resistance increased because of Au-Al intermetallic compound (IMC) growth. This polarity effect of Au stud bumps was different from that of solder bumps, and the mechanism was investigated by the calculation of chemical and electrical atomic flux. According to SEM and EDS results, major IMC phase was $Au_5Al_2$, and crack propagated along the interface between Au stud bump and IMC resulting in electrical failures at UEB. Therefore. failure mechanisms at Au stud bump/ACF flip chip Joint undo high current density condition are: 1) crack propagation, accompanied with Au-Al IMC growth. reduces contact area resulting in contact resistance increase; and 2) the polarity effect, depending on the direction of electrons. induces and accelerates the interfacial failure at UEBs.

  • PDF

A study on the application of MEMS CMP with Micro-structure pad (마이크로 구조를 가진 패드를 이용한 MEMS CMP 적용에 관한 연구)

  • Park Sung-Min;Jeong Suk-Hoon;Jeong Moon-Ki;Park Boum-Young;Jeong Hea-Do
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.481-482
    • /
    • 2006
  • Chemical-mechanical polishing, the dominant technology for LSI planarization, is trending to play an important function in micro-electro mechanical systems (MEMS). However, MEMS CMP process has a couple of different characteristics in comparison to LSI device CMP since the feature size of MEMS is bigger than that of LSI devices. Preliminary CMP tests are performed to understand material removal rate (MRR) with blanket wafer under a couple of polishing pressure and velocity. Based on the blanket CMP data, this paper focuses on the consumable approach to enhance MEMS CMP by the adjustment of slurry and pad. As a mechanical tool, newly developed microstructured (MS) pad is applied to compare with conventional pad (IC 1400-k Nitta-Haas), which is fabricated by micro melding method of polyurethane. To understand the CMP characteristics in real time, in-situ friction force monitoring system was used. Finally, the topography change of poly-si MEMS structures is compared according to the pattern density, size and shape as polishing time goes on.

  • PDF

Incipient Fault Detection of Reactive Ion Etching Process

  • Hong, Sang-Jeen;Park, Jae-Hyun;Han, Seung-Soo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.6 no.6
    • /
    • pp.262-271
    • /
    • 2005
  • In order to achieve timely and accurate fault detection of plasma etching process, neural network based time series modeling has been applied to reactive ion etching (RIE) using two different in-situ plasma-monitoring sensors called optical emission spectroscopy (OES) and residual gas analyzer (RGA). Four different subsystems of RIE (such as RF power, chamber pressure, and two gas flows) were considered as potential sources of fault, and multiple degrees of faults were tested. OES and RGA data were simultaneously collected while the etching of benzocyclobutene (BCB) in a $SF_6/O_2$ plasma was taking place. To simulate established TSNNs as incipient fault detectors, each TSNN was trained to learn the parameters at t, t+T, ... , and t+4T. This prediction scheme could effectively compensate run-time-delay (RTD) caused by data preprocessing and computation. Satisfying results are presented in this paper, and it turned out that OES is more sensitive to RF power and RGA is to chamber pressure and gas flows. Therefore, the combination of these two sensors is recommended for better fault detection, and they show a potential to the applications of not only incipient fault detection but also incipient real-time diagnosis.

Real-time geometry identification of moving ships by computer vision techniques in bridge area

  • Li, Shunlong;Guo, Yapeng;Xu, Yang;Li, Zhonglong
    • Smart Structures and Systems
    • /
    • v.23 no.4
    • /
    • pp.359-371
    • /
    • 2019
  • As part of a structural health monitoring system, the relative geometric relationship between a ship and bridge has been recognized as important for bridge authorities and ship owners to avoid ship-bridge collision. This study proposes a novel computer vision method for the real-time geometric parameter identification of moving ships based on a single shot multibox detector (SSD) by using transfer learning techniques and monocular vision. The identification framework consists of ship detection (coarse scale) and geometric parameter calculation (fine scale) modules. For the ship detection, the SSD, which is a deep learning algorithm, was employed and fine-tuned by ship image samples downloaded from the Internet to obtain the rectangle regions of interest in the coarse scale. Subsequently, for the geometric parameter calculation, an accurate ship contour is created using morphological operations within the saturation channel in hue, saturation, and value color space. Furthermore, a local coordinate system was constructed using projective geometry transformation to calculate the geometric parameters of ships, such as width, length, height, localization, and velocity. The application of the proposed method to in situ video images, obtained from cameras set on the girder of the Wuhan Yangtze River Bridge above the shipping channel, confirmed the efficiency, accuracy, and effectiveness of the proposed method.

In-situ monitoring and reliability analysis of an embankment slope with soil variability

  • Bai, Tao;Yang, Han;Chen, Xiaobing;Zhang, Shoucheng;Jin, Yuanshang
    • Geomechanics and Engineering
    • /
    • v.23 no.3
    • /
    • pp.261-273
    • /
    • 2020
  • This paper presents an efficient method utilizing user-defined computer functional codes to determine the reliability of an embankment slope with spatially varying soil properties in real time. The soils' mechanical properties varied with the soil layers that had different degrees of compaction and moisture content levels. The Latin Hypercube Sampling (LHS) for the degree of compaction and Kriging simulation of moisture content variation were adopted and programmed to predict their spatial distributions, respectively, that were subsequently used to characterize the spatial distribution of the soil shear strengths. The shear strength parameters were then integrated into the Geostudio command file to determine the safety factor of the embankment slope. An explicit metamodal for the performance function, using the Kriging method, was established and coded to efficiently compute the failure probability of slope with varying moisture contents. Sensitivity analysis showed that the proposed method significantly reduced the computational time compared to Monte Carlo simulation. About 300 times LHS Geostudio computations were needed to optimize precision and efficiency in determining the failure probability. The results also revealed that an embankment slope is prone to high failure risk if the degree of compaction is low and the moisture content is high.

Clinical Study of Prosthetic Heart Valve Replacement with CarboMedics. (CarboMEdics 기계판막을 이용한 심장판막 치환술의 임상 연구)

  • 장원기;구자홍;조중구;김공수
    • Journal of Chest Surgery
    • /
    • v.33 no.1
    • /
    • pp.45-50
    • /
    • 2000
  • Background: The CarboMedics prosthetic heart valve was produced in an attempt to improve the existing valve designs and was especially concerned with easily the implantation and further reduction of turbulence. Precise positioning of the valve in situ was achieved by the abilityof the valve to rotate relative to the sewing ring. Improved monitoring is possible due to increased radiopacity and the dacron sewing ring is coated with carbon to reduce pannus overgrowth. The leaflets have an opening angle of 78 degrees that apparently allows a rapid synchronous closure The aim of this study was to analyze the clinical performance of the CarboMedics valve prostheses(45 mitral 13 aortic and 7 double aortic-mitral valve replacement) were implanted in 65 patients(mean age 48.75$\pm$9.74 years) Result: The operative mortality was 3.1%(2/65) causes of death were low cardiac output syndrome. Total follow up was 1831 patient-months and mean follow up was 29.06$\pm$10.97 months/patient. No structural failure hemorrhage valve thrombosis and late death have been observed. Embolism occurred at a rate of 0.65%/Patient-year. Actuarial survival and thrombo-mbolism free rate at 36 months were 96.9% and 98.4% respectively. Consclusions: The CarboMedics valve stands for low valve related complicatons.

  • PDF