DOI QR코드

DOI QR Code

Electrochemical and surface investigations of copper corrosion in dilute oxychloride solution

  • Gha-Young Kim (Disposal Safety Evaluation R&D Division, Korea Atomic Energy Research Institute (KAERI)) ;
  • Junhyuk Jang (Decommissioning Technology Division, Korea Atomic Energy Research Institute (KAERI)) ;
  • Jeong-Hyun Woo (Disposal Safety Evaluation R&D Division, Korea Atomic Energy Research Institute (KAERI)) ;
  • Seok Yoon (Disposal Safety Evaluation R&D Division, Korea Atomic Energy Research Institute (KAERI)) ;
  • Jin-Seop Kim (Disposal Performance Demonstration R&D Division, Korea Atomic Energy Research Institute (KAERI))
  • Received : 2023.04.06
  • Accepted : 2023.05.17
  • Published : 2023.08.25

Abstract

The corrosion behavior of copper immersed in dilute oxychloride solution (100 mM) was studied through surface investigation and in-situ monitoring of open-circuit potential. The copper corrosion was initiated with copper dissolution into a form of CuCl-2, resulting in mass decrease within the first 40 h of immersion. This was followed by a hydrolysis reaction initiated by the CuCl-2 at the copper surface, after which oxide products were formed and deposited on the surface, resulting in a mass increase. The formation of nucleation sites for copper oxide and its lateral extension during the corrosion process were examined using focused ion beam (FIB)-scanning electron microscopy (SEM). The presence of metastable compounds such as atacamite (CuCl2·3Cu(OH)2) on the corroded copper surface was revealed by X-ray photoelectron spectra (XPS) and transmission electron microscopy (TEM)-energy dispersive spectrometry (EDS) analysis.

Keywords

Acknowledgement

This work was supported by a National Research Foundation of Korea (NRF) grant and the Institute for Korea Spent Nuclear Fuel (iKSNF) funded by the Korea government (Ministry of Science and ICT, MSIT) (2021M2E3A2041351, 2021M2E1A1085193).

References

  1. P. Oy, Safety case for the disposal of spent nuclear fuel at Olkiluoto - performance assessment 2012, in: POSIVA-2012-04, 2013. 
  2. A. Nirex, Review of the Deep Borehole Disposal Concept for Radioactive Waste, Nirex Report no. N/108, Oxfordshire, UK, 2004. 
  3. P.V. Brady, B.W. Arnold, P.N. Swift, Deep Borehole Disposal of High-Level Radioactive Waste, SAND2009-4401, SNL, Albuquerque, New Mexico, 2009. 
  4. G.-Y. Kim, J. Jang, M. Lee, M. Kong, S. Yoon, Corrosion behaviors of SS316L, Ti-Gr.2, Alloy 22 and Cu in KURT groundwater solutions for geological deep disposal, Nucl. Eng. Technol. 54 (2022) 4474-4480, https://doi.org/10.1016/j.net.2022.07.024. 
  5. G.-Y. Kim, J. Jang, M. Lee, J.-S. Kim, Effect of chloride ions on electrochemical behavior of canister materials, Sci. Technol. Nucl. Install. 2022 (2022) 1-6, https://doi.org/10.1155/2022/8577144. 
  6. G.-Y. Kim, S.-W. Kim, J. Jang, S. Yoon, J.-S. Kim, Investigation of early corrosion behavior of canister candidate materials in oxic groundwater by the EQCM method, Sci. Technol. Nucl. Install. 2022 (2022) 1-6, https://doi.org/10.1155/2022/4582625. 
  7. G.Y. Kim, K. Kim, J.-Y. Lee, W.-J. Cho, J.-S. Kim, Current status of the KURT and long-term in-situ experiments, J. Korean Soc. Mineral. Energy Resour. Eng. 54 (2017) 344-357, https://doi.org/10.12972/ksmer.2017.54.4.344. 
  8. J.-H. Ryu, J.-S. Kwon, G.Y. Kim, Y.-K. Koh, Geochemical characterization of rock-water interaction in groundwater at the KURT site, J. of the Korean Radioactive Waste Society 10 (2012) 189-197, https://doi.org/10.7733/jkrws.2012.10.3.189. 
  9. F. King, C. Lilja, K. Pedersen, P. Pikanen, M. Vahanen, An Update of the State-Of-The-Art Report on the Corrosion of Copper under Expected Conditions in a Deep Geologic Repository, Svensk Karnbranslehantering AB, 2010, pp. TR-10-TR-67. 
  10. P. Pitkanen, M. Snellman, U. Vuorinen, On the Origin and Chemical Evolution of Groundwater at the Olkiluoto Site, POSIVA Oy, 1996. POSIVA-96-04. 
  11. M. Gobien, F. Garisto, E. Kremer, C. Medri, Sixth Case Study Reference Data and Codes, Nuclear Waste Management Organization, 2016. NWMO-TR-2016-10. 
  12. Postclosure Safety Assessment of a Used Fuel Repository in Sedimentary Rock, Nuclear Waste Management Organization, NWMO-TR-2018-08, 2018. 
  13. H.-J. Choi, J.Y. Lee, J. Choi, Development of geological disposal systems for spent fuels and high-level radioactive wastes in Korea, Nucl. Eng. Technol. 45 (2013) 29-40, https://doi.org/10.5516/NET.06.2012.006. 
  14. J. Jang, M. Lee, G.-Y. Kim, M. Kong, J.-S. Kim, Designs of corrosion modules for long-term corrosion tests of canister materials in aerobic and anaerobic underground water, Nucl. Tech. (2021), https://doi.org/10.2139/ssrn.4272574. 
  15. S.H. Drissi, Ph Refait, M. Abdelmoula, J.M.R. Genin, The preparation and thermodynamic properties of Fe(II)-Fe(III) hydroxide-carbonate (green rust 1); Pourbaix diagram of iron in carbonate-containing aqueous media, Corrosion Sci. 37 (1995) 2025-2041, https://doi.org/10.1016/0010-938X(95)00096-3. 
  16. Y. Matsukawa, M. Miyashita, S. Asakura, Influence of anions on corrosion behavior of zinc in tap water, ZAKAEP 57 (2008) 392-399, https://doi.org/10.3323/jcorr.57.392. 
  17. F. King, C.D. Litke, M.J. Quinn, D.M. LeNeveu, The measurement and prediction of the corrosion potential of copper in chloride solutions as a function of oxygen concentration and mass-transfer coefficient, Corrosion Sci. 37 (1995) 833-851, https://doi.org/10.1016/0010-938X(95)80013-1. 
  18. H.P. Lee, K. Nobe, Kinetics and mechanisms of Cu electrodissolution in chloride media, J. Electrochem. Soc. 133 (1986) 2035-2043, https://doi.org/10.1149/1.2108335. 
  19. G. Kear, B.D. Barker, F.C. Walsh, Electrochemical corrosion of unalloyed copper in chloride media - a critical review, Corrosion Sci. 46 (2004) 109-135, https://doi.org/10.1016/S0010-938X(02)00257-3. 
  20. V.K. Sharma, F.J. Millero, The oxidation of Cu(I) in electrolyte solutions, J. Solut. Chem. 17 (1988) 581-599, https://doi.org/10.1007/BF00651464. 
  21. S.A. Campbell, G.J.W. Radford, C.D.S. Tuck, B.D. Barker, Corrosion and galvanic compatibility studies of a high-strength copper-nickel alloy, Corrosion 58 (2002) 57-71, https://doi.org/10.5006/1.3277305. 
  22. R. Zhang, Z. Zhu, X. Leng, J. Pan, Y. Zhang, Corrosion characteristic of Cu-10Ni-Fex in 3.5 % NaCl, Int. J. Electrochem. Sci. 13 (2018) 11526-11538, https://doi.org/10.20964/2018.12.11. 
  23. F. King, Corrosion of Copper in Alkaline Chloride Environments, SKB, August 2002. TR-02-25. 
  24. L. De Los Santos Valladares, D.H. Salinas, A.B. Dominguez, D.A. Najarro, S.I. Khondaker, T. Mitrelias, C.H.W. Barnes, J.A. Aguiar, Y. Majima, Crystallization and electrical resistivity of Cu2O and CuO obtained by thermal oxidation of Cu thin films on SiO2/Si substrate, Thin Solid Films 520 (2012) 6368-6374, https://doi.org/10.1016/j.tsf.2012.06.043. 
  25. T. Kosec, Z. Qin, J. Chen, A. Legat, D.W. Shoesmith, Copper corrosion in bentonite/saline groundwater solution: effects of solution and bentonite chemistry, Corrosion Sci. 90 (2015) 248-258, https://doi.org/10.1016/j.corsci.2014.10.017. 
  26. I.T. Vargas, D.A. Fischer, M.A. Alsina, J.P. Pavissich, P.A. Pasten, G.E. Pizarro, Copper corrosion and biocorrosion events in premise plumbing, Materials 10 (2017) 1036, https://doi.org/10.3390/ma10091036. 
  27. W.-L. Dai, Q. Sun, J.-F. Deng, D. Wu, Y.-H. Sun, XPS studies of Cu/ZnO/Al2O3 catalysts derived by a novel gel oxalatate co-precipitation for methanol synthesis by CO2+H2, Appl. Surf. Sci. 177 (2001) 172-179, https://doi.org/10.1016/S0169-4332(01)00229-X. 
  28. Z. Xiao, Z. Li, A. Zhu, Y. Zhao, J. Chen, Y. Zhu, Surface characterization and corrosion behavior of a novel gold-imitation copper alloy with high tarnish resistance in salt spray environment, Corrosion Sci. 76 (2013) 42-51, https://doi.org/10.1016/j.corsci.2013.05.026. 
  29. M.C. Biesinger, Advanced analysis of copper X-ray photoelectron spectra, Surf. Interface Anal. 49 (2017) 1325-1334.  https://doi.org/10.1002/sia.6239
  30. A. Wang, M. Zhang, H. Yin, S. Liu, M. Liu, T. Hu, Direct reaction between silicon and methanol over Cu-based catalysts: investigation of active species and regeneration of CuCl catalyst, RSC Adv. 8 (2018) 19317-19325, https://doi.org/10.1039/c8ra03125h. 
  31. R. Zhang, H. Yin, D. Zhang, L. Qi, H. Lu, Y. Shen, T. Jiang, Gas phase hydrogenation of maleic anhydride to tetrahydrofuran by Cu/ZnO/TiO2 catalysts in the presence of n-butanol, Chem. Eng. J. 140 (2008) 488-496, https://doi.org/10.1016/j.cej.2007.11.031. 
  32. M.C. Biesinger, L.W.M. Lau, A.R. Gerson, R.S.C. Smart, Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn, Appl. Surf. Sci. 257 (2010) 887-898, https://doi.org/10.1016/j.apsusc.2010.07.086. 
  33. A.L. Ma, S.L. Jiang, Y.G. Zheng, W. Ke, Corrosion product film formed on the 90/10 copper-nickel tube in natural seawater: composition/structure and formation mechanism, Corrosion Sci. 91 (2015) 245-261, https://doi.org/10.1016/j.corsci.2014.11.028. 
  34. I.J. Villar-Garcia, K.R.J. Lovelock, S. Men, P. Licence, Tuning the electronic environment of cations and anions using ionic liquid mixtures, Chem. Sci. 5 (2014) 2573-2579, https://doi.org/10.1039/C4SC00106K.