• 제목/요약/키워드: il-algebra

검색결과 39건 처리시간 0.023초

ON THE QUOTIENT BOOLEAN ALGEBRA ℘(S)/I

  • Baik, Seung-Il;Kyoung, Il-Ho
    • Korean Journal of Mathematics
    • /
    • 제12권1호
    • /
    • pp.49-54
    • /
    • 2004
  • In this paper we introduce the notion of quotient Boolean algebra and study the relation between the ideals of Boolean algebra ${\wp}(S)$ and the ideals of quotient Boolean algebra ${\wp}(S)/I$.

  • PDF

Separating sets and systems of simultaneous equations in the predual of an operator algebra

  • Jung, Il-Bong;Lee, Mi-Young;Lee, Sang-Hun
    • 대한수학회지
    • /
    • 제32권2호
    • /
    • pp.311-319
    • /
    • 1995
  • Let $H$ be a separable, infinite dimensional, complex Hilbert space and let $L(H)$ be the algebra of all bounded linear operaors on $H$. A dual algebra is a subalgebra of $L(H)$ that contains the identity operator $I_H$ and is closed in the $weak^*$ topology on $L(H)$. Note that the ultraweak operator topology coincides with the $weak^*$ topology on $L(H)$ (see [5]).

  • PDF

ℂ-VALUED FREE PROBABILITY ON A GRAPH VON NEUMANN ALGEBRA

  • Cho, Il-Woo
    • 대한수학회지
    • /
    • 제47권3호
    • /
    • pp.601-631
    • /
    • 2010
  • In [6] and [7], we introduced graph von Neumann algebras which are the (groupoid) crossed product algebras of von Neumann algebras and graph groupoids via groupoid actions. We showed that such crossed product algebras have the graph-depending amalgamated reduced free probabilistic properties. In this paper, we will consider a scalar-valued $W^*$-probability on a given graph von Neumann algebra. We show that a diagonal graph $W^*$-probability space (as a scalar-valued $W^*$-probability space) and a graph W¤-probability space (as an amalgamated $W^*$-probability space) are compatible. By this compatibility, we can find the relation between amalgamated free distributions and scalar-valued free distributions on a graph von Neumann algebra. Under this compatibility, we observe the scalar-valued freeness on a graph von Neumann algebra.

19세기 대수학 및 논리학 발달에서의 드모르간의 위상 (De Morgan in the development of algebra and mathematical logic in 19C)

  • 최지선;박선용;김재홍;권석일;박교식
    • 한국수학사학회지
    • /
    • 제22권4호
    • /
    • pp.129-144
    • /
    • 2009
  • 이 연구의 목적은 19세기 대수와 논리 분야에서 드모르간이 구체적으로 어떻게 기여했는지를 살펴보는 것이다. 19세기 대수 분야 발달과정에서 드모르간은, 산술에서 단순히 유추한 형태의 기호대수를 넘어서, 형식으로부터 구성하는 수학의 가능성을 인식하고 이를 명시적으로 나타내어 추상대수학으로 나아갈 수 있는 기초를 닦았다. 드모르간은 19세기 논리학 분야 발달과정에서 아리스토텔레스 논리학의 재구성자인 동시에 수학적 논리학의 창시자로 간주할 수 있다. 그의 연구로 논리학이 철학에서 분리되어 나와 수학과 더욱 긴밀하게 결합하게 되어 수학적 논리학이 하나의 독립적 학문으로 자리 잡게 되었다. 그의 연구 활동을 통하여 우리는 19세기 수학의 발달에서 대수학과 논리학이 현재의 상태로 진화하여 가는 모습을 좀 더 명확하게 알 수 있다.

  • PDF

대수 발달의 단계에 관한 드모르간의 관점 연구 (De Morgan's view on the development of algebra)

  • 유미경;김재홍;권석일;박선용;최지선;박교식
    • 한국수학사학회지
    • /
    • 제21권4호
    • /
    • pp.61-78
    • /
    • 2008
  • 이 연구에서는 대수 발달의 단계에 관한 드모르간의 관점을 그가 사용한 용어를 바탕으로 산술, 보편산술, 기호대수, 의미적 대수의 순서로 나누어 논의한다. 드모르간은 즉각적으로 계산 결과를 얻는 산술과 문자기호를 사용하는 보편산술을 구분하였다. 그에 의하면, 보편산술은 산술에서 대수로 이행하는 과도기적 단계인 바, 이 단계에서 이상하고 불합리한 현상들이 발생하기에 대수가 필요하게 된다. 대수 발달의 단계에 관해 드모르간이 가진 관점의 특징은 기호의 의미가 사라진 규칙 체계 즉, 기호적 계산법을 얻은 후, 이 기호적 계산법 자체를 논리적으로 만들기 위해 기호에 확장된 의미를 부여하여 의미적 계산법으로 만든다는 것이다. 단일대수는 -1에 확장된 의미를 부여함으로써 만들어지고, 이중대수는 $\sqrt{-1}$에 확장된 의미를 부여함으로써 만들어진다. 드모르간에 의하면, 대수 발달에서는 앞에서 제시된 체계의 불완전성에 주목하여 다음 체계를 이끌어낸다.

  • PDF

CENTER SYMMETRY OF INCIDENCE MATRICES

  • Lee, Woo
    • 대한수학회논문집
    • /
    • 제15권1호
    • /
    • pp.29-36
    • /
    • 2000
  • The T-ideal of F(X) generated by $x^{n}$ for all x $\in$ X, is generated also by the symmetric polynomials. For each symmetric poly-nomial, there corresponds one row of the incidence matrix. Finding the nilpotency of nil-algebra of nil-index n is equivalent to determining the smallest integer N such that the (n, N)-incidence matrix has rank equal to N!. In this work, we show that the (n, (equation omitted)$^{(1,....,n)}$-incidence matrix is center-symmetric.

  • PDF

GROBNER-SHIRSHOV BASES FOR IRREDUCIBLE sp4-MODULES

  • Lee, Dong-Il
    • 대한수학회지
    • /
    • 제45권3호
    • /
    • pp.711-725
    • /
    • 2008
  • We give an explicit construction of Grobner-Shirshov pairs and monomial bases for finite-dimensional irreducible representations of the simple Lie algebra $sp_4$. We also identify the monomial basis consisting of the reduced monomials with a set of semistandard tableaux of a given shape, on which we give a colored oriented graph structure.

DILATIONS FOR POLYNOMIALLY BOUNDED OPERATORS

  • EXNER, GEORGE R.;JO, YOUNG SOO;JUNG, IL BONG
    • 대한수학회지
    • /
    • 제42권5호
    • /
    • pp.893-912
    • /
    • 2005
  • We discuss a certain geometric property $X_{{\theta},{\gamma}}$ of dual algebras generated by a polynomially bounded operator and property ($\mathbb{A}_{N_0,N_0}$; these are central to the study of $N_{0}\timesN_{0}$-systems of simultaneous equations of weak$^{*}$-continuous linear functionals on a dual algebra. In particular, we prove that if T $\in$ $\mathbb{A}$$^{M}$ satisfies a certain sequential property, then T $\in$ $\mathbb{A}^{M}_{N_0}(H) if and only if the algebra $A_{T}$ has property $X_{0, 1/M}$, which is an improvement of Li-Pearcy theorem in [8].