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DILATIONS FOR POLYNOMIALLY
BOUNDED OPERATORS

GEORGE R. EXNER, YOUNG S00 JO, AND I, BONG JUNG

ABSTRACT. We discuss a certain geometric property Xy 4 of dual
algebras generated by a polynomially bounded operator and prop-
erty (A x,,n,); these are central to the study of Ny x No-systems
of simultaneous equations of weak*-continuous linear functionals
on a dual algebra. In particular, we prove that if T ¢ A M satis-
fies a certain sequential property, then T' € A %(H) if and only if
the algebra At has property Xo1/a, which is an improvement of
Li-Pearcy theorem in [8].

1. Introduction and preliminaries

Let H be a separable, infinite dimensional, complex Hilbert space
and let £(H) be the algebra of all bounded linear operators on H. A
dual (operator) algebra is a subalgebra of L(H) that contains the iden-
tity operator Iy and is closed in the ultraweak operator topology on
L(H). Note that the ultraweak operator topology coincides with the
weak™® topology on L(H). An operator T in L(H) is said to be polyno-
mially bounded if there exists a positive number M such that for every
polynomial p, [[p(T)|| < M supjy<; |p(A)[- It is well-known that every
contraction in L(H) is polynomially bounded. Concerning the converse
implication, P. Halmos[6] posed the question as to whether each polyno-
mially bounded operator is similar to a contraction operator. In [11], G.
Pisier gave a polynomially bounded operator on [? which is not similar
to a contraction, and K. Davidson and V. Paulsen[3] provided a class
of examples of polynomially bounded operators which are not similar to
contractions which includes examples due to Pisier. So there is strong
motivation for the study of dual algebras generated by polynomially
bounded operators. As one of such studies, W. Li and C. Pearcy in [7]
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and [8] studied polynomially bounded operators by developing a the-
ory of the dual algebras generated by such operators that parallels, as
much as possible, the theory of dual algebras generated by a contraction
and gave an open problem concerning an abstract geometric criterion
for membership in a certain class Aﬁlo. In this paper we will discuss

this problem. In particular, we prove that if 7" € AM satisfies a certain
sequential property, then T' € A {\{IO(H) if and only if the algebra Ar has
property Xo 1/um-

Before we start the work, we recall some definitions and terminology
concerning the theory of dual algebras (cf. [1]). The notation employed
herein agrees with that in 1], [7], [8], and [12]. Let C1(H) be the Banach
space of trace class operators on ‘H equipped with the trace norm. If Ais
a dual algebra, then it follows from [3] that A can be identified with the
dual space of Q4 = C1(H)/*+ A, where + A is the preannihilator in C; (H)
of A, under the pairing (T, [L]4) = trace(TL), T € A, [L]l4 € Qa.
The Banach space Q4 is called a predual of A. We write [L] for [L] 4,
and ||[L]|| for }|[L]||4, when there is no possibility of confusion. For
T € L(H), we denote by Ar the dual algebra generated by T and
denote by Qr the predual space Q 4, of Ar. For x and y in H, we define
(z ® y)(u) = (u,y)z, for all u € H. Suppose m and n are any cardinal
numbers such that 1<m,n <Ng. A dual algebra A will be said to have
property (A, ) if every mxn system of simultaneous equations of the
form [z;®y;] = [Li;], 0 <3 <m, 0 <j <n, where {[Lij]}géi_im is an
arbitrary m x n array from Q4, has a solution {z;}o<i<m, _{Jyj}ogj@

consisting of a pair of sequences of vectors from H. For brevity, we shall
denote (Ap ) by (Ap).

We write D for the open unit disc in the complex plane C, T for the
boundary of D, and N for the set of natural numbers. Recall that an
operator is absolutely continuous if its maximal unitary direct summand
is absent or has spectral measure absolutely continuous with respect to
Lebesgue measure.

Let PB(H) = PB be the set of all polynomially bounded operators
T in L(H). If T € PB, then there exists a smallest positive number
M > 1 such that for every polynomial p, ||p(T)|| < M supyep [p(A)]- We
write PBM (H) or PB for the set of all T in PB(H) for which M is the
smallest such constant. The class of all absolutely continuous operators
in PB(H) will be denoted by ACPB(H), and we write ACPBM(H) =
PBM(H) N ACPB(H). For f in H®(T) write f for the function defined

by f(e¥) = f(e®).
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THEOREM 1.1. [7, Theorem 4.1] Let T € ACPBM (H) for some
M > 1. Then there is a unique norm-continuous algebra homomorphism
& : H®(T) — Ar such that

(a) (1) = Iy, ®7(&) =T, and if o(T) C D, then dr(f) = f(T),
where fis the analytic extension of f to D and f(T) is defined by
the Riesz-Dunford functional calculus,

(b) @]l =M,

(C) (I)T*(f) = @T(f)*, fe Hoo(-ﬂ')’

(d) ®r is continuous if both H* and Ar are given their weak* topolo-
gies,

(e) the range of ®r is weak™ dense in Ar,

(f) there exists a bounded, linear, one-to-one map ¢y : Qp — L'/Hj
such that ¢ = @7, and

(g) if &7 is bounded below, then ®p is an invertible isomorphism of
H® onto Ar that is also a weak* homeomorphism between H*
and A, and ¢r is an invertible linear transformation of Q7 onto
L/H}.

We usually write f(T) for @7 (f).

The class AM(H) consists of all those M-polynomially bounded op-
erators T in ACPBM for which ||A]] < ||®r(h)|| € M||hlle, h € H*™.
Furthermore, if m and n are any cardinal numbers such that 1<m, n<Rg,
we denote by AM = AM () the set of all T in A" (%) such that the
singly generated dual algebra Az has property (A,,,). Suppose that
A C L(H) is a dual algebra and 6§ is a nonnegative real number. We
denote by Xy(.A) the set of all [L] in '@ 4 such that there exist sequences
{z;}32, and {y;}$2; of vectors from the closed unit ball of H satisfying
lim sup; o [|[z: ® %] — [L]|| < 6 and ||[z; ® 2]|| + [[[z @ gi]|| — 0, for all =
in H. For 0 < # < v, the dual algebra A is said to have property Xg - if
the closed absolutely convex hull aco(Xy(.A)) of the set Xp(.A) contains
the closed ball By , of radius 7y centered at the origin in Q 4. Recall from
[1, Theorem 7.1] that if T' € A (H) and Ar has property Xg, for some
0 <6 <~, then T € Ay,, and the converse holds as well. But, perhaps
surprisingly, the forward result does, but this converse does not, gener-
alize to polynomially bounded operators (cf. [8, Proposition 2.3]). As
an example of what can be shown, Li-Pearcy[8] proved using spectral
theory that if T' € A%(H) N Cyo for some M > 1, then Ar has property
Xo,1/M-

A brief outline of this work is as follows: in Section 2, we intro-
duce some dilation lemmas used frequently in the work and discuss a
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sequential property S in a dual algebra. In Section 3, we investigate the
sequential properties in several ways. In Section 4, we generalize the
above theorem of Li—Pearcy using the sequential property S.

2. Preliminary lemmas and a sequential property

In this section, we will discuss some lemmas. First we will assemble
some dilation theorems.

LEMMA 2.1. Suppose that T € AQ’I forme N and M > 1. Let A be
a completely nonunitary contraction on K with dim K < co and having
an n-cyclic set. Then there exist M and N in Lat(T) with M D N such
that the compression Tapon of T to M © N is similar to A.

Proof. Since ¢ is onto, we can use the method of proof of [1, Theorem

4.12]. O
For each A € D, let Py be the Poisson kernel function in L!
, 11—\ ,
1 P ity — it cT.
(1) A (e”) o ©

In particular, for a given operator T € AM, let us denote qﬁ;l([PA])

by [Cy). Then we have (f(T),[C\]) = f(A), f € H®, where f is the
analytic extension of f to D.

COROLLARY 2.2. Suppose T € A{V[ and M > 1. Then for any A € D,
there exists a sequence {xp}$, of unit vectors in H which converges
weakly to zero and satisfies [Cy\|T = [z} ® Z}]r.

Proof. For A\g € D and any m € N, we consider an m by m Jordan
block

(2) Im =
0 |
Ao
relative to the standard orthonormal basis on € ™. Since J,, has a cyclic

vector and is similar to a contraction on €™, Lemma 2.1 implies that
there exist M and N in Lat(T) with M D> A such that dimM e N =m
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and Tmgy is similar to Jy,. Use the proof of [1, Theorem 6.6] to obtain
the lemma. O

For a Hilbert space K and any operators T; € £(K), i = 1,2, we
write 71 = T5 if T; is unitarily equivalent to 75. By using Lemma 2.1,
the proof of [4, Theorem 1.1] and [1, Theorem 5.3], we can obtain the
following,.

THEOREM 2.3. Suppose that T € A% for1<n<Ngand M > 1. Let
A be a normal operator on an n-dimensional Hilbert space whose matrix
to some orthonormal basis is the diagonal matrix Diag({\: }1<n<y,) With
X; in D. Then there exist M and N in Lat(T) with M D N such that

Tmen = A

REMARKS. According to the proof of [1, Proposition 6.5, if T' €
C.oNAY and M > 1, then for a sequence {z;} converging weakly to 0
we have

[z: @ 2}{ 4 — 0, for all z € H.
Then if T € Cyy N A{VI and M > 1, then we can prove that Ap has
property Xg /5. The proof uses the dilation theory instead of the spec-
tral theory approach used in [8, Theorem 2.14]. (Indeed, it follows from
Corollary 2.2 that for A\ € D, there exists a sequence {:cﬁ},‘f’zl of unit
vectors in ‘H, such that {z}}%2; — 0 weakly and [C)]r = [2} @ z}lr.
Then it follows from the above remark that

(3) lzi ® 2lllar + [z ® 23)]l.4r — 0, 2 € H.
Hence [Cy] € Xy(Ar), for all A € D. Since
(4) X()(AT) = WXO(.AT) = Balll/M(QT),

Ar has property Xo1/1.)
Now we introduce a sequential property as follows.
DEFINITION 2.4. A dual algebra A has property S if, for any given

vector x in ‘H, sequence {ey}7>; of unit vectors in H, and any e > 0,
there exist n € N and complex scalars aq, ..., a, such that

1) Y e |ak|2 =1, and
i) [z ® 3 %y aker]lla <e.

If A is singly generated, so A = Ap for some operator T, we shall
also say that T has property S.

LEMMA 2.5. Let A and B be dual algebras with A C B. If B has
property S, then A has property S.
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Proof. Let x € H and let {e;}72; be a sequence of unit vectors in H.

Then for any € > 0, there exist n € N and complex scalars a1,...,ay in
C such that
n n
(5) Z lag)? =1, and ||z ® Zakek] < €.
k=1 k=1 B

Since 1B ¢ +A, according to the definition of norm ||[L]||4 we have
L4 < |I[L]||g for any L € C;. So we have that
< €,

(6) r® Z akekjl
k=1 A

as desired. O

PROPOSITION 2.6. Let T be a dilation of T € L(H). If Ar has prop-
erty S, then Az has property S.

Proof. Use that |[[z @ y]||la; > [z ® y][|l.a; for all z and y in H. O

PRrROPOSITION 2.7. If T € Cy. and T is polynomially bounded, then
At has property S.

Proof. Let z, {ex}%>, C H and € > 0 be given. If {ex}7>, has terms
ei, e; (i # j) with e; = e;, then

(7) [m@(%ei—%ej)]” —0<e

Otherwise, the sequence must be infinite. Hence it has a weakly con-
vergent subsequence {eg, }52; converging weakly to an element e in H.
Since T € Cy. and is polynomially bounded, we have

(8) Iz ® (ex, —e)lll = 0 (¢ — o0),

because {ex, — e} is convergent weakly to zero. But then for any i,
sufficiently large, we have

(9)

o ()]
o (o)
o (o)l llee (=)l

IA
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Hence the proof is complete. O

3. Consideration of sequential properties

We pause for a moment to investigate property S and some related
properties before proceeding to applications. The sum in Definition 2.4
ii) may be written

n
(10) Y wlzey,
k=1
and this leads to a definition suitable for a general Banach space:

DEFINITION 3.1. A subspace F of a (complex) Banach space X has
property Sp if, for any bounded sequence {fx}3>, in F' and any € > 0,
there exist n in N and complex scalars ay,as,--- ,a, such that

i) r_;lak/? =1, and

i) [| 2 k=1 akfull < e

(Indeed, further (possibly useful?) properties arise from using differ-
ent norms in i) on the scalars ax.) A little thought shows that any finite
dimensional space has property Sp and that if X is any Banach space
containing a copy of cg, i1, or L', X itself does not (characteristic func-
tions provide counter examples). Thus “most” Banach spaces do not —
does any infinite dimensional Banach space? It is natural in view of our
intended applications to ask whether L! /H} has property Sp; we are
grateful to Christopher Boyd for showing us the following argument and
allowing us to include it here. Following Mujica [9], we define G°(D) as
the space of all linear maps from H*(ID) into €, which when restricted
to Bpeo(p), the unit ball of H*°(D), are continuous for the topology
of uniform convergence on compact subsets of D. We give G*®°(D) the
topology of uniform convergence on Byeo(p). With this topology G*(D)
becomes a Banach space (see [9]) and has the property that the Banach
dual of G*(D) is isometrically isomorphic to H*(D). For z € D we
denote by the §, the map from H*(D) into € defined by é,(f) = f(z).
From Corollary 4.12 of [9] it follows that G*°(ID) can be represented as
the space of all l; sums of sequences d,’s with z in D. That is,

G*®(D) = {Z)\n&cn :zp, € D and Z|)\n| < oo}.

n=1 n=1
It follows from [5, Theorem V.5.4] (see also [10]) that G>°(D) is isomet-
rically isomorphic to L!/H}.
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PROPOSITION 3.2. The space L'/H} does not have property Sp.

Proof. To see that L/ H& does not have property Sp we use the idea
of an interpolating sequence. A sequence {z; }j cn in D is called a H*®
interpolating sequence if for any {o;} jen N loo there is f € H*(D)
such that f(z;) = a;. It is shown in [2] that a necessary and sufficient
condition for {z; }jeN to be an interpolating sequence is that the infimum
of the Blaschke products satisfies

oo

(11) infr []
=1, j#k
Furthermore, given any interpolating sequence {z;} jeN there is a con-

stant K (see [5]), called the interpolation constant of {z; }j en» such that
if f(zj) = 0,1 < j < oo, then

(12) | £Il < Ksup,|a|.

Z %5 50,

1-2Zz

To show that G°(D) does not satisfy property Sg, consider {4, },cn
where {z,},cn is @ H™ interpolating sequence. Clearly {d.,},cn is
bounded in G®(D). Given any positive integer n and any finite se-
quence of complex numbers {og}_; such that

(13) D lexl>=1
k=1

we can find f € H®(D) with ||f|| < K and f(2;) = &;,1 < j < n (of
course |a;| < 1for 1 < j < n). Now

16z +a2dzy + - + o0z, |l

2%Mﬂm+mﬂm+m+%NM|

n
(4 = %Z |
k=1
1
=%
So clearly we cannot make
(15) sty + ndey -+ tnle | <

for any choice of {a;}7_; and therefore the space L'/H} cannot have
property Spg. O
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Remark that it might be interesting to know which subsets of L1/ H&
have property Sp. An alternate route to generalizing Definition 2.4
is to return to the case of a dual algebra and its predual and change
the allowable sequences of vectors. For example, we have the following
definition.

DEFINITION 3.3. A dual algebra A has property S, if, for any given
vector z in H, bounded sequence { f;}32,; of vectors in H, and any € > 0,
there exist n € N and complex scalars ay,...,a, such that

i) S2p_qlaxl*=1, and
ii) ”[.’L‘ &® ZZ:l akfk]HA < €.

We may make similar definitions in which the restriction on the se-
quence of vectors changes, and so may define properties S,, (the sequence
assumed weakly convergent), S,, (the sequence to consist of unit vectors,
yielding the original property S), S, (the sequence assumed orthonor-
mal), and so on. Again we abuse the language slightly to say that the
operator T has these properties. Note that any operator on finite dimen-
sional space has property Sp. Observe also that the proof of Proposition
2.7 actually says that T € Cj. and polynomially bounded implies Az
has property Sp. We next show that the converse does not hold using
the following lemma.

LemMmA 3.4. Let T be an operator such that At has property Sy, and
let T' be any operator on C". Then Argp has property Sp.

Proof. Let T act on H and 7" on H' = C". Let ¢ > 0 and suppose
2eHaeH and

(16) {ex}pi CHOH

a bounded sequence are given. Write vectors in H®H as w = w d '
with respect to the obvious decomposition. Observe that since T” acts on
finite dimensional space it has property (A1) (see [1, Theorem 2.06]),

so each element [L] in Q7 is of the form [L] = [a ® b] for some a and
bin H'. It is then easy to see that Qp is spanned by {[v; ® v;] : 1 <
i,j < n} where {v1,...,v,} is a basis of €". In particular, Q7 is of

finite dimension. In what follows we restrict our attention to the case
n = 2 for ease of exposition; note that in this case Q7 is of dimension
at most four. Since {ex}p2; € H is a bounded sequence, by repeated
use of the definition of property S; we may find non-negative integers
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0= Ny < N; <...< N5 and scalars ai, - ,an, so that
Nipa
(17) S JexlP=1, 0<i<4,
k=N;+1
and
Nit1 ¢
18 - <i<4
(18) T® Y oger <p 0%
k=N;+1 Ar

Observe that the collection

1+1
(19) z® Z arer’ | 10<i<4
k=N;+1

is a linearly dependent set in Q7. We may then choose scalars +;,
0 < <4, not all zero, so that

4 Nit1
(20) Z Yi [.T/ Y Z akek'] =0.
i=0 k=N;+1 A

To ease the notation slightly, let v = (vo,71,-.-,74), SO

Il =

Define scalars as follows:

(21) Bk =

YOk

o7/

0<i<4, Ni+1<k< Ny

Then

ArgT

I:IE@Z::l,Bkek] . [w'®< kNilﬂke'k)]
"Yz Nit1
< 2 H[ O N+1“’“e’“]

IN

(22) A

A
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1 4 Nit1
+H Z%‘ ' ® Z ager’
v =0 k=N;+1 A
T/
4
<3t
25
i= Z] 0|’)’_7|

< €,
where we have used (18) and (20). Further,

Ns 4 ’7 |2 Nit1
2 __ ? 2
D16l = Z——, 2 > lod
k=1 =0 ol k=N;+1
23 4
(23) _ il
=Y =3}
i=0 Zj:o |7j|
=1

K

where we have used (17). Thus we have a satisfactory sequence of scalars
for €, Z, and {éx}32;, and the proof is complete. O

Note that any operator T on a finite dimensional space has property
Sy, and so there are operators which are not in Cy. with property S.
With the aid of the previous lemma, we may do a little better.

COROLLARY 3.5. There exist operators with property S, (and hence
properties S,,, S, and S, ,,.)} which act on infinite dimensional space and
are not in Cy.

Proof. Let T be any operator acting on infinite dimensional space
with property Sy, (e.g., T € Cj. and polynomially bounded) and consider
T I. O

It is natural to consider direct sums of operators with the various
properties. An attempt to prove the anticipated result leads to a re-
alization that these properties are not at least obviously well behaved
with respect to direct sums (indeed, even T & T' presents difficulties).
We can obtain the following.

PROPOSITION 3.6. Suppose T and T’ are such that Ay and Ap: have
property Sy. Then Arpgr has property S,... In particular, if Ar has
property Sy and T € Cy., then Argr has property Son.-
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Proof. Let £ = z @ 2/, {éx}52; = {ex ® €} }i>; an orthonormal
sequence, and € > 0 be given. Observe that if {yz}M  is any finite
sequence of scalars satisfying 3 |v¢|? = 1, then

M
(24) Z Yeér|| = 1,
k=N
and hence
M
(25) Z Yk€k < 1a
k=N
and
M
(26) > ne| < L.
k=N

Let {6,}5°; be some sequence with strictly positive entries such that

[e¢]
€

For convenience of notation, let Ny = 0. By repeated use of the fact that
A7 has property Sp, and the observation that {ex}7>, is bounded, we
may produce an increasing sequence of positive integers {N,}32; and a
sequence {ay}%2 , of scalars satisfying

Np,
(28) Yool =1, n=12,,
k=Nnp_1+1
and
Nn
(29) z® > onex <8p, n=1,2--.
k=Np_1+1 Ap

To ease the notation, let

Nnp
(30) Yn = Z QLEL, TL=1,2,"'
k=Np_1+1
and
Np,
(31) 2z, = Z age, n=1,2,---.

k:Nn——1+1
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Using our initial observation, the z, form a bounded sequence. Since
A7 has property S, there exist scalars {3, }}.; such that

M
(32) > 1B =
n=1
and
M
(33) 2 ® Zﬂnz;} <3
n=1 Ags
Then
(34)
M [ M N, i
20 Balyn ® 2)) =[12®Y_ D Buowé
n=1 ArgT! | n=lk=Nnoat+l I A g
< |z® Z Z Braker
| n=lk=N,_1+1 Ar
+ x’®ZZNn B ake’]
n=1 F=Nn-1+1 " ’ Aqr
M Nn
< Z |/8n| zTQ Z (87715
n=1 k=Npn_1+1 Ap
M Ny i
+ :c'@Zﬁn Z agel
n=1 k=Np_1+1 A
M M
< Z lﬂnl(sn + z’ ® Zﬂnzail
n=1 n=1 A
< : + f= €. |
2 2
Hence the proof is complete. O

4. Two dual algebra properties

The following is the main theorem of this paper.
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THEOREM 4.1. Suppose Ar and A« have property S,,.. Assume
that T € AM. Then T € A{\(H) if and only if the algebra Ar has

property Xo1/um-

(Recall it is known from [8] that the reverse implication holds in
general.) Proposition 2.7, property S,n. a priori weaker than property
S, and Theorem 4.1 yield the following. ‘

COROLLARY 4.2. If T € Af{é (H) N Cpo, then the algebra Ar has
property Xo1/nm-

Proof of Theorem 4.1. According to Theorem 2.3, T' dilates, to some
semi-invariant subspace, a normal operator diagonal with respect to
some orthonormal basis and with eigenvalues dense in the disk and each

of infinite multiplicity. Write H as H = H; & Hz & H3 with respect to
the decomposition induced by this dilation. Fix (for the moment) A € D

an eigenvalue of T 2 Th,, and let {e;}32; be a collection of orthonormal
eigenvectors for Ty associated with A. Let us assemble some well known
facts. First,

35 [(00v@0)@(0®va0)r=I[C, ve\/{e}Z, Ivl=1

Second, since T3 € Cyg,
(36)
1o ® wlllag, + Ilw ® valllar, — 0, w € Ha, {2}y € Ha, vn 20,

and thus easily

(37) [{(08v,®0)@(06wd0)]| 47 — 0,w € Hz, {vn}sls C Hayvn =0,
and

(38) [[[(00wd0)@(0@un,®0)][| 4x — 0,w € Ha, {vn}32; € Hayvn — 0.
Third,

(39) [(0@7]@0)@(0@0@2)]'1“:0, v € Hy, z € Hs,
and
(40) [(’LU@OEBO)@(O@’U@O)]T:O, v € Ha, we Hj.

Let {w;}52; be a dense subset of Hi, and {#j}32, be a dense subset
of H3. We shall construct a collection {z,}52; C Hy of orthonormal
vectors in \/;2, e; satisfying

() lm (0@, ®0)® (w;®080)|4 =0, jEN,
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and
(42) Im [(0®062) ® 0@z, ®0)]lay =0, jEN.

Suppose for a moment this has been done. Of course by (35) we get
[zn ® zn) = [C]r for each n. Equations (41) and (42), and the results
in (37), (39), and (40), show that the sequence {0 ® z, ® 0}52; satisfies
both vanishing conditions for all vectors in the set {(w; ®v@® 2x) : v €
Ho, 7,k € N} (which is clearly dense in H). A standard argument then
promotes these vanishing conditions to all vectors in H, and then we
obtain as in the Remarks in Section 2 that [C)] € Xp(Az). Since we
may perform an identical construction for any of the eigenvalues of T,
we obtain via standard arguments By 1 /0 (Qr) 2 ac0Xp(Ar), and thus
Ar has property X1/ as desired.

We embark now upon the construction of the {z,}>2 ;. The con-
struction is both recursive and diagonal, so let us set some notation and
definitions. The definition below indicates the sort of sequences we will
need.

DEFINITION 4.3. Suppose {a,}52, is some sequence of vectors. We
say that a sequence {b;}$°, is block supported on the sequence {an}5%;
if there exists an increasing sequence {n;}3°; of positive integers so that
i) The vector b, is a linear combination of a,, satisfying 1 < n < n;, and
ii) Each b;, ¢ = 2,.. ., is a linear combination of a,, satisfying n;_; +1 <
n < n,.

We make four observations for later use. First, if b is a sequence block
supported on a and c¢ is block supported on b then c¢ is block supported on
a. Second, if b is a sequence block supported on a where a is a sequence of
pairwise orthogonal vectors, then b also is a sequence of pairwise orthog-
onal vectors. Third, if the sequence a consists of orthonormal vectors,
then any b, is a unit vector if and only if its coefficients with respect to
a are absolutely square summable to one, and that any such unit vec-
tor sequence b (block supported on @) is actually again an orthonormal
sequence. Fourth, call a subsequence {j(n)}52; of the positive integers
integer thin if

oo
1 1
> <-—, N=1,2,....
. 2 2’ 1~
i) N

Call a subsequence {a;()}ne; of the sequence of vectors a thin if

{j(n)}32, is integer thin. If b is any sequence of vectors block supported
on a thin subsequence of a, then note that b is block supported on a.
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Observe that each by is a linear combination of aj(n)’s with n > N.
Write

N
(43) bN = Z aj(n)aj(n),

where all but finitely many of the a]\é ) are zero (for each N). Now
suppose w is some fixed vector and a is a sequence of unit vectors chosen
so that

lw® ap)ll <1/n, neN,

with b a sequence of vectors supported on a thin subsequence of a, and
in addition each by is a linear combination of a;(,)’s with coefficients
absolutely square summable to 1. We have the following estimate, for
each N, showing that the by “inherit” the good property of the a, with
respect to w (we omit temporarily subscripts Az on the norms):

|lwebn]ll = w®(2a a;(n)ﬂu
< Z ‘0‘ w®“](n)]”
n=N
44 > 1
( ) < nX: |a] —)
1/2 / o ) 1/2
< (Skol) (S 5)
< 1/N.

A similar result obviously holds for subsequences block supported on
thin subsequences of sequences a chosen so that ||[a, ® w]|| is small. We
shall construct a collection of sequences {r?}2 ;, one for each ¢ in N,
and a collection of sequences {s¢,}22;, one for each ¢ in N, satisfying the
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following;:
(45) _ ,
(i) Each r}, and s}, is a unit vector in \/;Z, e;, i,n € N,
(ii) {r%b};'f:l is block supported on {e,}52, '
(iii) {r?}%2, is block supported on a thin subsequence of {s%1}°2,,
i€N,i>2, o
(iv) {s}22; is block supported on a thin subsequence of {r},}7,
ieN,
W) N0808z) 8 0@, @0l <7, ineN,and
(vi) (0@ s, ®0)® (wi ®0D Oy < 5, 5,1 €N,
Supposing these sequences have been .constructed, let us show how to
choose the {z,}22 ;. We may write the 7}, and s}, in the array

1 .1 .1
RERE I
IR
r{ Ty T3
st 3 s3
and choose the x, diagonally:
1
Iy =Ty,
1
T2 = 89,
(46)
r3 = T3,

Using the third observation after Definition 4.3, it is clear that {zn}2,
is an orthonormal sequence. By (45-i1) and (35) we have that
[Ty ® zp] = [Cy]7, n€N.

Then by repeated use of the fourth observation following Definition 4.3
one may show that

1
(47) 10z, ®0) @ (w; ® 0P 0)]|| 4y < — i,m €N i<n/2
and

1
(48) [(0D0® 2) ® (0® 2, ® 0)]]| 47 < = hneN, i< n/2,

which obviously yield (41) and (42). Then, modulo the construction of
the r;, and s}, we are done.
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We sketch the construction of the {r%,}22; and {s%}°2; and leave the
details to the interested reader. Consider the collection

{(00062)® (0B e, ®0))7:ne N}

If this collection is finite, it is easy to construct the {r1}2% ;: find m,
and m!, distinct, so that

(0000 21)@ (0P em ®0)|r=[(000D21) @ (0P e & 0)]7,

where upon
1 1 -1
1

= Eeml + Eeml
is satisfactory. Repeating, it is easy to finish what is required for i = 1
in (45-1), (45-ii), and (45-v). If the collection C = {[(0 D 0 21) ® (0 b
en ® 0)]r : n € N} is infinite, we may use that A7 has property S, to

T

deduce that there exist n; and scalars ay,...,a,, so that
ny

(49) e =1
i=1

and

la1[(0 0@ 21)® (0D ey ®O)] +...
(50) +am (09 0@ 21) ® (0® eny ® 0)]]l]ar
< 1.

It is clear from (49) that
ny

(51) ri=3 e
i=1

is a unit vector and from (50) that
(52) 10 0& 21) ® (0® 71 &0))flar < 1.

Thus this choice for ! is satisfactory for i = n = 1 in (45-i), (45-ii),
and (45-v); repeating this construction using only {en}5.,,,, it is easy
to get the rest of the 7} as required. To construct {s1}2;, repeat the
procedure just given with the {e,}52,; replaced by a thin subsequence of
{r1}22,, 21 replaced by wy, and of course with reference to the condition
desired in (45-iv), i.e., with w; on the right instead of the left. (Recall
that ||[a ® b]|| 47 = ||[b ® a]|| 4,. and use Ap+ has property S,,..) Con-
tinuing this process, we may indeed construct the required sequences
{ri} ; and {s}}%°,, and the proof is finally complete. a

n=1»



Dilations for polynomially bounded operators 911

REMARKS. We noted above that property So.n. is a priori weaker
than property S; we do not know whether it is in fact weaker, nor, in
fact, any but the obvious relationships between the properties. Also,
the referee of an earlier version of this paper asks the natural question
whether the unilateral shift U of multiplicity one has property S. While
we are unable to resolve this, we conjecture that it does not, based on
the following observations. First, if U has property S, observe that the
unilateral shift U of any multiplicity (even Ng) has property S, since
for any particular vector w, verification of the definition comes down
to what happens in the cyclic subspace generated by w; either this is
trivially (0), or the restriction of U™ to this space is simply the shift
of multiplicity one. Since via Proposition 2.6 any operator dilated by a
pure shift will then inherit property S, the class of operators with this
property would be very large. In particular, any contraction in the class
C.o will have this property, since these operators have minimal isometric
dilation a pure shift. We believe this is unlikely, especially in light of the
observation that property S is associated in some sense with the class
Cy., not Cy.

Observe that an effort to prove U does not have property S along
the lines of Proposition 3.2 founders on the difference between the norm
in H of vectors {e,}>2; and the norm in Qr of {{w ® ey]}5%;. This
exposes clearly the difference between the conditions A4 has property
S (or the variants) and Qr has property Sp. Indeed, since it is well
known that ||[w@z}||a; < [[w]|-||z], clearly the image set {[w ®en]}72,
of a bounded set {e,}%2; would be bounded; therefore, if L'/H} had
property Sg then every operator in A would have property Sp.
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