• Title/Summary/Keyword: hyperplane

Search Result 117, Processing Time 0.03 seconds

𝜖-PERTURBATION METHOD FOR VOLUME OF HYPERCUBES CLIPPED BY TWO OR THREE HYPERPLANES

  • Cho, Eungchun;Cho, Yunhi
    • Honam Mathematical Journal
    • /
    • v.43 no.4
    • /
    • pp.679-689
    • /
    • 2021
  • The first author suggested an exact volume formula of the hypercubes [0, 1]n clipped by several hyperplanes expressed directly in terms of linear coefficients of the hyperplanes. However, it requires awkward assumptions to apply the formula to various situations. We suggest a concrete method to overcome those restrictions for two or three hyperplanes using 𝜖-perturbation, which gives an exact value applicable for any kind of arrangement of hyperplanes with no consideration.

A Study on Web-User Clustering Algorithm for Web Personalization (웹 개인화를 위한 웹사용자 클러스터링 알고리즘에 관한 연구)

  • Lee, Hae-Kag
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.5
    • /
    • pp.2375-2382
    • /
    • 2011
  • The user clustering for web navigation pattern discovery is very useful to get preference and behavior pattern of users for web pages. In addition, the information by the user clustering is very essential for web personalization or customer grouping. In this paper, an algorithm for clustering the web navigation path of users is proposed and then some special navigation patterns can be recognized by the algorithm. The proposed algorithm has two clustering phases. In the first phase, all paths are classified into k-groups on the bases of the their similarities. The initial solution obtained in the first phase is not global optimum but it gives a good and feasible initial solution for the second phase. In the second phase, the first phase solution is improved by revising the k-means algorithm. In the revised K-means algorithm, grouping the paths is performed by the hyperplane instead of the distance between a path and a group center. Experimental results show that the proposed method is more efficient.

Analysis and Implementation of Speech/Music Classification for 3GPP2 SMV Codec Based on Support Vector Machine (SMV코덱의 음성/음악 분류 성능 향상을 위한 Support Vector Machine의 적용)

  • Kim, Sang-Kyun;Chang, Joon-Hyuk
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.45 no.6
    • /
    • pp.142-147
    • /
    • 2008
  • In this paper, we propose a novel a roach to improve the performance of speech/music classification for the selectable mode vocoder (SMV) of 3GPP2 using the support vector machine (SVM). The SVM makes it possible to build on an optimal hyperplane that is separated without the error where the distance between the closest vectors and the hyperplane is maximal. We first present an effective analysis of the features and the classification method adopted in the conventional SMV. And then feature vectors which are a lied to the SVM are selected from relevant parameters of the SMV for the efficient speech/music classification. The performance of the proposed algorithm is evaluated under various conditions and yields better results compared with the conventional scheme of the SMV.

Heat Transfer Analysis of Bi-Material Problem with Interfacial Boundary Using Moving Least Squares Finite Difference Method (이동최소제곱 유한차분법을 이용한 계면경계를 갖는 이종재료의 열전달문제 해석)

  • Yoon, Young-Cheol;Kim, Do-Wan
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.6
    • /
    • pp.779-787
    • /
    • 2007
  • This paper presents a highly efficient moving least squares finite difference method (MLS FDM) for a heat transfer problem of bi-material with interfacial boundary. The MLS FDM directly discretizes governing differential equations based on a node set without a grid structure. In the method, difference equations are constructed by the Taylor polynomial expanded by moving least squares method. The wedge function is designed on the concept of hyperplane function and is embedded in the derivative approximation formula on the moving least squares sense. Thus interfacial singular behavior like normal derivative jump is naturally modeled and the merit of MLS FDM in fast derivative computation is assured. Numerical experiments for heat transfer problem of bi-material with different heat conductivities show that the developed method achieves high efficiency as well as good accuracy in interface problems.

A Comparative Study on the Pronunciations of Korean and Vietnamese on Korean Syllable Final Double Consonants (베트남인 한국어 학습자와 한국인의 한국어 겹받침 발음 비교 연구)

  • Jang, Kyungnam;You, Kwang-Bock
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.6
    • /
    • pp.637-646
    • /
    • 2022
  • In this paper the comparative study on the pronunciation of Vietnamese learners and Koreans for the Korean syllable final double consonants was performed. For many errors and the suggested teaching methods related to the pronunciation of the Korean syllable final double consonants that were investigated and analyzed through linguistic research the results of this study by using the analysis tools of speech signal processing were confirmed. Thus, we suggest the new educational method in this paper. Using SVM, which is widely used in machine learning of artificial intelligence the pronunciation of Vietnamese learners and that of Koreans were compared. Being able to obtain the decision hyperplane of the SVM means that Vietnamese learners' pronunciation of the Korean syllable final double consonants is quite different from that of Koreans. Otherwise their pronunciation are pretty similar each other. The new teaching method presented in this paper is not only composed of writing and listening but is included things such as the speech signal waveform in the time domain and its corresponding energy that can be visualized to the learners.

Composite Control for Inverted Pendulum System

  • Kwon, Yo-Han;Kim, Beom-Soo;Lee, Sang-Yup;Lim, Myo-Taeg
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.4 no.1
    • /
    • pp.84-91
    • /
    • 2002
  • A new composite control method for a carriage balancing single inverted pendulum system is proposed and applied to swing up the pendulum and to stabilize it under the state constraint. The target inverted pendulum system has an extremely limited length of the cart(below 16cm). The proposed swing-up controller comprises a sliding mode control algorithm and an optimal control algorithm based on two regions: the region near the inverted unstable equilibrium position and the rest of the state space including the downward stable equilibrium position. The sliding mode controller uses a switching control action to converge along the specified path(hyperplane) derived from energy equation from a state around the path to desired state(standing position). An optimal control method is also used to guarantee the stability at unstable equilibrium position. Compared with the reported controllers, it is simpler and easier to implement. Experimental results are given to show the effectiveness of this controller.

A Sensorless Speed control of IPMSM using an Adaptive Integral Binary Observer (적응 적분바이너리 관측기를 이용한 돌극형 영구자석 동기전동기 센서리스 속도제어)

  • Lee, Hyoung;Kim, Young-Cho;Kang, Hyoung-Seok;Kim, Young-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2006.04b
    • /
    • pp.229-231
    • /
    • 2006
  • The paper presents a sensorless speed control of interior permanent magnet synchronous motors using an adaptive integral binary observer in view of composition with a main loop regulator and an auxiliary loop regulator. The binary observer has a property of the chattering alleviation in the constant boundary layer; however, the steady state estimation accuracy and robustness are dependent upon with width of the constant boundary. In order to improve the steady state performance of the binary observer, the binary observer is formed by adding extra integral dynamic to the switching hyperplane equation.

  • PDF

Position Control of DC Servo Motor Using the EESM Control Method (동등 편차 슬라이딩 모드를 이용한 직류 서보 전동기의 위치 제어)

  • 이윤종;손영대
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.40 no.1
    • /
    • pp.47-57
    • /
    • 1991
  • A new control algorithm so called equal excursion sliding mode (EESM) control method is proposed to control the position of DC servo motor. This method introduces the concept of phase velocity vector that Filippov presented, and simplifies the problem of control gain selection in a conventional VSC strategy. And, by making state trajectories have equal excursions on both sides of switching hyperplane we minimized the probability of sliding mode's being collapsed, and approximated to the ideal sliding moed. Also, we proved the validity of this method by comparing the application results of this method to DC servo motor with those of conventional VSC strategy.

  • PDF

A Speed Control of Permanent Magnet Synchronous Motor using an Adaptive Integral Binary Observer without Speed and Position Sensors (적응적분바이너리 관측기를 이용한 위치 및 속도 센서없는 영구자석 동기전동기의 속도제어)

  • Lee, Joung-Hum;Choi, Yang-Kwang;Kim, Young-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2003.10b
    • /
    • pp.83-85
    • /
    • 2003
  • This paper presents a speed control of permanent magnet synchronous motors (PMSM) using an adaptive integral binary observer without speed and position sensors. In view of composition with a main loop regulator and an auxiliary loop regulator, the binary observer has a property of the chattering alleviation in the constant boundary layer. In order to improve the steady state performance of the binary observer, the proposed adaptive integral binary observer is formed by adding extra integral dynamics to the switching hyperplane equation. The effectiveness of the proposed system is conformed by the experimental results.

  • PDF

Output Feedback Sliding Mode Control System with Disturbance Observer for Rotational Inverted Pendulums (외란 관측기를 이용한 회전형 역진자 시스템의 출력 피드백 슬라이딩 모드 제어)

  • Lee, Gyu-Jun;Ha, Jong-Heon;Kim, Jong-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.2
    • /
    • pp.243-253
    • /
    • 2002
  • This paper presents the system modeling, analysis, and controller design and implementation for a rotational inverted pendulum system(RIPS), which is an under-actuated system and has the problem of unattainable angular velocity state. A sliding mode controller using the parameterization of both the hyperplane and the compensator fur output feedback is applied to the RIPS. Also, to improve the performance of the control system, a disturbance observer which estimates the disturbance, parameter variation, and some modeling errors of RIPS with less computational effort is used together. The results of simulation and experiment show that the proposed control system has superior performance for disturbance rejection and regulation at certain initial conditions.