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ϵ-PERTURBATION METHOD FOR VOLUME OF

HYPERCUBES CLIPPED BY TWO OR THREE

HYPERPLANES

Eungchun Cho and Yunhi Cho∗

Abstract. The first author suggested an exact volume formula of the

hypercubes [0, 1]n clipped by several hyperplanes expressed directly in

terms of linear coefficients of the hyperplanes. However, it requires awk-
ward assumptions to apply the formula to various situations. We suggest

a concrete method to overcome those restrictions for two or three hyper-

planes using ϵ-perturbation, which gives an exact value applicable for any
kind of arrangement of hyperplanes with no consideration.

1. Introduction

Many application problems require evaluating the volume of a hypercube
clipped by several hyperplanes. The hyperplanes correspond to linear con-
straints in machine learning [6] and computational statistics problems and
metamer mismatch volume [4] [5].

There are exact volume formulas (see [1] for clipped by one hyperplane and
[2] for more than one hyperplanes) of [0, 1]n clipped by hyperplanes and for a
general convex polytope [3], which are expressed in a sufficiently concrete man-
ner. Those volume formulas give mathematically exact volumes, however that
formulas need some critical conditions. There are several assumptions which
originate in Lawrence’s original formula [3] for a general convex polytope, and
those are transformed to good clipping conditions of a clipped hypercube (see
Section 4.2 and [2] in detail). The conditions are mathematically reasonable
because it essentially means that the vertices are in general position. Never-
theless, these give rise to subtle difficulties under various practical situations
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since it is not so easy to check a violation and to devise a detour way. In this
paper, we give a complete expression of the exact volume for [0, 1]n clipped by
two or three hyperplanes using ϵ-perturbation (see also Section 6.2 and Appen-
dix B, C, D in [2] for specially easy ϵ-perturbation 4 examples). Although we
only consider two and three hyperplanes, our idea can be extended to arbitrary
number of hyperplanes by using of suitable ϵ-perturbation.

2. Notations

The hypercube [0, 1]n is an n-cell of a cubical complex K, and we define
F i as the open d-skeleton Ki \ Ki−1, where Ki is the i-skeleton of K. For
example, [0, 1]2 consists of four points F 0, four open intervals F 1 and one open
rectangle F 2. Let

g1(x) = a · x+ r1 = a1x1 + a2x2 + · · ·+ anxn + r1,

g2(x) = b · x+ r2 = b1x1 + b2x2 + · · ·+ bnxn + r2,

g3(x) = c · x+ r3 = c1x1 + c2x2 + · · ·+ cnxn + r3,

Hi = {x|gi(x) = 0} and H+
i = {x|gi(x) ≥ 0}.

We denote that | · | denote the cardinality and specially |0v| is the num-
ber of indices i of vertex v = (v1, . . . , vn) for which vi = 0, and ∗ : F 1 →
{1, 2, . . . , n} =: [n] is the function that assigns v the index i for which vi ̸= 0, 1,
and ∗1 : F 2 → [n] (resp. ∗2 : F 2 → [n]) is the function that assigns v the first
index i (resp. the second index i) for which vi ̸= 0, 1, and (ab)ij , (ac)ij , (bc)ij

and (abc)ijk denote the determinants

∣∣∣∣ ai bi
aj bj

∣∣∣∣, ∣∣∣∣ ai ci
aj cj

∣∣∣∣, ∣∣∣∣ bi ci
bj cj

∣∣∣∣ and∣∣∣∣∣∣
ai bi ci
aj bj cj
ak bk ck

∣∣∣∣∣∣, respectively. To help understanding, let us see an example with

w = (0, 1, 0, 7
8 , 0, 0, 1) ∈ F 1 ⊂ [0, 1]7 and v = (0, 1, 1

3 , 0, 0, 1,
3
5 ) ∈ F 2 ⊂ [0, 1]7,

then we get

|0w| = 4, |0v| = 3, ∗(w) = 4, ∗1(v) = 3, ∗2(v) = 7,

(vw)47 =

∣∣∣∣ v4 w4

v7 w7

∣∣∣∣ = ∣∣∣∣ 0 7
8

3
5 1

∣∣∣∣ = −21

40
.

We need more definitions for the formula (1) and the good clipping condition
in the next section. Let us denote the notation •v and ∗v by ordered sets of
indices satisfying the following

∗v := {i ∈ [n] | vi ̸= 0, 1} = {∗1(v), ∗2(v), . . .}, •v := [n] \ ∗v.

Let AJ
I denote a minor with indices I and J of a matrix A = (ai,j) = (abc),

where a,b, c are column vectors. For example, let I = {1, 4} and J = {2, 3}.
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Then

AJ
I =

∣∣∣∣ a1,2 a1,3
a4,2 a4,3

∣∣∣∣ = ∣∣∣∣ b1 c1
b4 c4

∣∣∣∣ .
We call an index I well-ordered if i1 < i2 < · · · < is. We consider two

different notions of union operation for ordered sets. One is the ordered union
∪ respecting the order between two well-ordered indices, for instance, for t ̸∈ I,

I ∪ {t} := {i1, i2, . . . , t, . . . , is} when i1 < i2 < · · · < t < · · · < is.

The other is the joining union ∨ as concatenation as follows,

I ∨ {t} := {i1, i2, . . . , is, t}.

We abbreviate a set of one element {x} to x omitting the brace symbols, for
example, I ∨ {t} =: I ∨ t and I \ {t} =: I \ t.

Let H+ denote the intersection of all the half spaces H+
i ,

H+ =
⋂

i∈[m]

H+
i ,

where m is the total number of hyperplanes and m = 3 in this paper. Let I be
a set of indices for several hyperplanes usually not including the m-th auxiliary
plane, i.e. I ⊂ [m− 1] and let HI denote the intersection of H+ \Hm and the
hyperplanes Hi for i ∈ I, i.e.,

HI :=
⋂
i∈I

Hi ∩H+ \Hm.

3. Volume formula of the hypercubes clipped by three hyper-
planes and good clipping conditions

From Theorem 4.6 in [2], we can see the following complicated volume for-
mula of a hypercube clipped by m hyperplanes H1,H2, . . . , Hm with good clip-
ping conditions:

vol ([0, 1]n ∩
m⋂
i=1

H+
i )

=
∑

I⊂{1,2,...,m−1}

∑
v∈F |I|∩HI

(−1)|0v|+
|I|(|I|+1)

2 (gm(v)AI
∗v
)n

n!|AI
∗v
|
∏
t∈I

A
I∨m\t
∗v

∏
t∈•v

AI∨m
∗v∨t

,

(1)

where the good clipping conditions show concrete expressions:

(A) For any I ⊂ {1, 2, . . . ,m− 1}, F |I|−1 ∩HI = ∅,

(B) For any I ⊂ {1, 2, . . . ,m−1} and v ∈ F |I|∩HI ,
∏
t∈I

A
I∪m\t
∗v

∏
t∈•v

AI∪m
∗v∪t ̸= 0.
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In order to understand the formula and the good clipping conditions, we
have to see the Notation section in [2]. However, we will use and consider only
k = 3 case, so we need not so many notations in (1). Now we introduce k = 3
version of the formula (1) which is our starting point (see Corollary 5.1 in [2]).

Theorem 3.1. The volume of the unit hypercube [0, 1]n intersecting three
halfspaces H+

1 , H+
2 , and H+

3 under seven conditions (see Remark 1) is

vol ([0, 1]n ∩H+
1 ∩H+

2 ∩H+
3 ) =

∑
v∈F 0∩H+

1 ∩H+
2 ∩H+

3

(−1)|0v|g3(v)
n

n!
∏n

k=1 ck

−
∑

v∈F 1∩H1∩H+
2 ∩H+

3

(−1)|0v| sgn(a∗(v)) a
n−1
∗(v) g3(v)

n

n! c∗(v)
∏n

k=1,k≠∗(v)(ac)∗(v)k

−
∑

v∈F 1∩H+
1 ∩H2∩H+

3

(−1)|0v| sgn(b∗(v)) b
n−1
∗(v) g3(v)

n

n! c∗(v)
∏n

k=1,k ̸=∗(v)(bc)∗(v)k

−
∑

v∈F 2∩H1∩H2∩H+
3

(−1)|0v| sgn((ab)∗1(v)∗2(v)) (ab)
n−1
∗1(v)∗2(v)

g3(v)
n

n! (ac)∗1(v)∗2(v)(bc)∗1(v)∗2(v)

∏n
k=1,k ̸=∗1(v),∗2(v)

(abc)∗1(v)∗2(v)k
.

(2)

Remark 1. The good clipping conditions change to the following seven
conditions ((A) ⇒ (1), (2), (3); (B) ⇒ (4), (5), (6), (7)):

(1) F 0 ∩H1 ∩H+
2 ∩H+

3 = ∅,
(2) F 0 ∩H+

1 ∩H2 ∩H+
3 = ∅,

(3) F 1 ∩H1 ∩H2 ∩H+
3 = ∅,

(4)
∏n

k=1 ck ̸= 0,
(5)

∏n
k=1,k ̸=∗(v)(ac)∗(v)k ̸= 0,

(6)
∏n

k=1,k ̸=∗(v)(bc)∗(v)k ̸= 0,

(7) (ac)∗1(v)∗2(v) ̸= 0, (bc)∗1(v)∗2(v) ̸= 0,
∏n

k=1,k ̸=∗1(v),∗2(v)
(abc)∗1(v)∗2(v)k ̸=

0.

Because the good clipping condition (A) with m = 3 implies three cases F 0 ∩
H1∩H+

2 ∩H+
3 \H3 = ∅ or F 0∩H+

1 ∩H2∩H+
3 \H3 = ∅ or F 1∩H1∩H2∩H+

3 \
H3 = ∅, and above each term in the formula (2) with vertices in the auxiliary
hyperplane H3 gives 0 value from g3(v) = 0, so we could not consider the case
v ∈ H3. Hence we get above three cases (A) ⇒ (1), (2), (3).

The good clipping condition (B) means that the denominator of each term
in the formula (2) is not 0, so (B) ⇒ (4), (5), (6), (7) is trivial.

Even though the seven conditions which were originated in the good clipping
conditions are complicated, they are all measure zero conditions which can be
avoided by applying an appropriate perturbation on the hyperplanes. Therefore
we can obtain the volume of the clipped hypercube by applying a small ϵ-
perturbation of the hyperplanes and taking limϵ→0. However, we should be
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cautious about the perturbing way; for example, the simpler changes ai + iϵ
instead of ai + ϵ2 + iϵ or bi + ϵi instead of bi + ϵ2i−1 in Theorem 3.2 may not
satisfy the seven conditions all together. Our main result Theorem 3.2 gives
a concrete method that guarantees safe use of ϵ-perturbation that does not
violate any of the seven conditions.

Theorem 3.2. From the ϵ changes of coefficients of gi(x) in H+
i :

g1(x)→g1,ϵ(x)=a1,ϵx1 + a2,ϵx2 + · · ·+ an,ϵxn + r1,ϵ

=(a1 + ϵ2 + ϵ)x1 + (a2 + ϵ2 + 2ϵ)x2 + · · ·+ (an + ϵ2 + nϵ)xn

+(r1 + ϵ),

g2(x)→g2,ϵ(x)=b1,ϵx1 + b2,ϵx2 + · · ·+ bn,ϵxn + r2,ϵ

=(b1 + ϵ)x1 + (b2 + ϵ3)x2 + · · ·+ (bn + ϵ2n−1)xn + (r2 + ϵ2),

g3(x)→g3,ϵ(x)=c1,ϵx1 + c2,ϵx2 + · · ·+ cn,ϵxn + r3,

where ci,ϵ =

{
ci, if ci ̸= 0
ϵ, if ci = 0

,

the volume of the unit hypercube [0, 1]n that intersects three halfspaces H+
1 ,

H+
2 , and H+

3 is obtained from limϵ→0 vol ([0, 1]
n ∩ H+

1,ϵ ∩ H+
2,ϵ ∩ H+

3,ϵ), where

H+
i,ϵ = {x|gi,ϵ(x) ≥ 0}, Hi,ϵ = {x|gi,ϵ(x) = 0}.

In fact, we need not change all coefficients of gi(x) to satisfy the seven
conditions. More precisely, we can only change coefficients whose indices are
related to the seven conditions.

If the hyperplane H2 does not intersect [0, 1]n, then the following corollary
holds only with three conditions (1), (4), (5) in Remark 1. BecauseH2∩[0, 1]n =
∅ implies (2) F 0 ∩ H+

1 ∩ H2 ∩ H+
3 = ∅, (3) F 1 ∩ H1 ∩ H2 ∩ H+

3 = ∅ and
(6)∗ F 1 ∩ H+

1 ∩ H2 ∩ H+
3 = ∅, (7)∗ F 2 ∩ H1 ∩ H2 ∩ H+

3 = ∅, and (6)∗, (7)∗

imply (6), (7) trivially.

If two hyperplanes H1,H2 do not intersect [0, 1]n, then the formula (2)
becomes that of Barrow and Smith [1] with only one condition (4) in Remark
1. Because H1 ∩ [0, 1]n = ∅ implies (1) F 0 ∩H1 ∩H+

2 ∩H+
3 = ∅ and (5)∗ F 1 ∩

H1 ∩H+
2 ∩H+

3 = ∅, and (5)∗ implies (5) trivially.

Corollary 1. The volume of the standard unit hypercube [0, 1]n intersect-
ing the two halfspaces H+

1 and H+
3 under three conditions (see Remark 2)

is

vol ([0, 1]n ∩H+
1 ∩H+

3 ) =
∑

v∈F 0∩H+
1 ∩H+

3

(−1)|0v|g3(v)
n

n!
∏n

k=1 ck

−
∑

v∈F 1∩H1∩H+
3

(−1)|0v| sgn(a∗(v)) a
n−1
∗(v) g3(v)

n

n! c∗(v)
∏n

k=1,k ̸=∗(v)(ac)∗(v)k
.

(3)
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Remark 2. The two halfspaces in the above general position should satisfy
the following three conditions:

(1) F 0 ∩H1 ∩H+
3 = ∅,

(2)
∏n

k=1 ck ̸= 0,
(3)

∏n
k=1,k ̸=∗(v)(ac)∗(v)k ̸= 0.

Corollary 2. (Barrow and Smith) The volume of the standard unit hy-
percube [0, 1]n intersecting one halfspace H+

3 under the condition
∏n

k=1 ck ̸= 0
is

vol ([0, 1]n ∩H+
3 ) =

∑
v∈F 0∩H+

3

(−1)|0v|g3(v)
n

n!
∏n

k=1 ck
(4)

4. ϵ-perturbation of Hyperplanes

Now we explain an ϵ-perturbation (ϵ > 0) of hyperplanes. If the hyperplanes
do not satisfy all of the conditions, we change each hyperplane Hi to Hi,ϵ and
take a limit limϵ→0 vol ([0, 1]

n∩H+
1,ϵ∩H+

2,ϵ∩H+
3,ϵ), then we can get the volume

vol ([0, 1]n ∩H+
1 ∩H+

2 ∩H+
3 ).

Now we prove Theorem 3.2.

Proof of Theorem 3.2. If the first condition is violated, then we change
r1 → r1,ϵ = r1 + ϵ, and if the second condition is violated, then we change
r2 → r2,ϵ = r2 + ϵ2, and if the third condition is violated, then we change
r1 → r1 + ϵ, r2 → r2 + ϵ2. Geometrically, the condition F 0 ∩ H1 = ∅ (first
condition is exactly F 0 ∩ H1 ∩ H+

2 ∩ H+
3 = ∅) means that all vertices of

hypercube do not touch the hyperplane H1. So if some vertex of hypercube
meets hyperplane H1, then the small parallel movement of H1 implies the
property F 0 ∩ H1 = ∅ trivially, and the second case similarly. For the third
condition F 1 ∩ H1 ∩ H2 ∩ H+

3 = ∅, the condition F 1 ∩ H1 ∩ H2 ̸= ∅ means
that there exists some value xi (0 < xi < 1) such that aixi +M1 + r1 = 0 and
bixi+M2+ r2 = 0 are satisfied, where M1 = a1δ1+ · · ·+ai−1δi−1+ai+1δi+1+
· · ·+ anδn and M2 = b1δ1 + · · ·+ bi−1δi−1 + bi+1δi+1 + · · ·+ bnδn (δk = 0 or 1
for all k = 1, . . . , n). So we get xi = −M1+r1

ai
= −M2+r2

bi
, however the new

relation −M1+r1+ϵ
ai

= −M2+r2+ϵ2

bi
is impossible for all sufficiently small ϵ, i.e.,

aiϵ
2 − biϵ ̸= 0 for any ϵ ∈ (0, ϵ0) with sufficiently small positive ϵ0.

If the fourth condition is violated, then we change ci = 0 → ci,ϵ = ϵ for all
zero coefficient ci’s. This changing trivially satisfies the condition 4).

If the fifth condition is violated, then we change

(a1, a2, . . . , an) → (a1,ϵ, a2,ϵ, . . . , an,ϵ) = (a1+ϵ2+ϵ, a2+ϵ2+2ϵ, . . . , an+ϵ2+nϵ).

In fact, we need not change all ai, specifically we only need to change the
smallest index set {i1, i2, . . . , ik} ⊂ {1, 2, . . . , n} such that (ac)ij = 0 for any
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distinct indices i, j ∈ {i1, i2, . . . , ik} and (ac)ji1 , . . . , (ac)jik ̸= 0 for arbitrary
index j ∈ {1, 2, . . . , n} \ {i1, i2, . . . , ik}. This change shows that (ac)ij = 0
implies (aϵcϵ)ij ̸= 0 for ϵ ∈ (0, ϵ0), where ϵ0 is a sufficiently small positive

number. Three kind of (ac)ij must be considered:

∣∣∣∣ ai ci
aj cj

∣∣∣∣, ∣∣∣∣ ai 0
aj cj

∣∣∣∣,
and

∣∣∣∣ ai 0
aj 0

∣∣∣∣ (the case

∣∣∣∣ ai ci
aj 0

∣∣∣∣ is almost same as the second one, and all

ci, cj ̸= 0).

The first case of

∣∣∣∣ ai ci
aj cj

∣∣∣∣ = 0 implies

∣∣∣∣ ai,ϵ ci,ϵ
aj,ϵ cj,ϵ

∣∣∣∣ = ∣∣∣∣ ai + ϵ2 + n1ϵ ci
aj + ϵ2 + n2ϵ cj

∣∣∣∣ = (cj − ci)ϵ
2 + (n1cj − n2ci)ϵ ̸= 0

for ϵ ∈ (0, ϵ0) and two different positive integers n1, n2.

The second case of

∣∣∣∣ ai 0
aj cj

∣∣∣∣ = 0 implies ai = 0 and

∣∣∣∣ ai,ϵ ci,ϵ
aj,ϵ cj,ϵ

∣∣∣∣
=

∣∣∣∣ ϵ2 + n1ϵ ϵ
aj + ϵ2 + n2ϵ cj

∣∣∣∣ = −ϵ3 + (cj − n2)ϵ
2 + (n1cj − aj)ϵ ̸= 0 for ϵ ∈ (0, ϵ0)

and two different positive integers n1, n2.

The third case of

∣∣∣∣ ai 0
aj 0

∣∣∣∣ = 0 implies

∣∣∣∣ ai + ϵ2 + n1ϵ ϵ
aj + ϵ2 + n2ϵ ϵ

∣∣∣∣ = (n1 − n2)ϵ
2 +

(ai − aj)ϵ ̸= 0 for ϵ ∈ (0, ϵ0) and two different positive integers n1, n2.

If the sixth condition is violated in the fifth condition violation, then we
change

(b1, b2, . . . , bn) → (b1,ϵ, b2,ϵ, . . . , bn,ϵ) = (b1 + ϵ, b2 + ϵ3, . . . , bn + ϵ2n−1)

using the same method of choosing the smallest index set as the fifth case. Also

the property

∣∣∣∣ bi,ϵ ci,ϵ
bj,ϵ cj,ϵ

∣∣∣∣ ̸= 0 is easily obtained in a similar way to those used

in the calculations of the three cases in the violation of the fifth condition. If we
use the changing rule (b1+ϵ, b2+ϵ2, . . . , bn+ϵn) instead of (b1+ϵ, b2+ϵ3, . . . , bn+

ϵ2n−1), then we can find an unavoidable example

∣∣∣∣ 0 1
0 0

∣∣∣∣ = 0 →
∣∣∣∣ ϵ 1
ϵ2 ϵ

∣∣∣∣ ≡ 0.

If the seventh condition is violated, then we change (abc)ijk → (aϵbϵcϵ)ijk
for the corresponding indices i, j, k, where the aϵ,bϵ, cϵ are already defined in
the above conditions, i.e., am,ϵ = ϵ2 +mϵ+ am, bm,ϵ = ϵ2m−1 + bm, cm,ϵ = ϵ or
cm(̸= 0) for any index m ∈ {i, j, k} (i < j < k). There are eight cases which
we have to consider depending on ci, cj , ck = 0 or not.

In the first (ci,ϵ, cj,ϵ, ck,ϵ) = (ϵ, ϵ, ϵ) and second (ci,ϵ, cj,ϵ, ck,ϵ) = (ϵ, ϵ, ck) cases,
we know that the highest degree term of (aϵbϵcϵ)ijk (as a polynomial of ϵ)
becomes (j − i)ϵ2k+1. Hence this implies (aϵbϵcϵ)ijk ̸= 0 for ϵ ∈ (0, ϵ0).
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In the third (ci,ϵ, cj,ϵ, ck,ϵ) = (ϵ, cj , ϵ) and fourth (ci,ϵ, cj,ϵ, ck,ϵ) = (ϵ, cj , ck)
cases, we know that the highest degree term of (aϵbϵcϵ)ijk becomes ϵ2k+2.
Hence this implies (aϵbϵcϵ)ijk ̸= 0 for ϵ ∈ (0, ϵ0).
In the fifth (ci, ϵ, ϵ) and sixth (ci, ϵ, ck) cases, we know that the highest degree
term of (aϵbϵcϵ)ijk becomes −ϵ2k+2. Hence this implies (aϵbϵcϵ)ijk ̸= 0 for
ϵ ∈ (0, ϵ0).
In the seventh (ci, cj , ϵ) and eighth (ci, cj , ck) cases, we know that the highest
and second large degree term of (aϵbϵcϵ)ijk becomes (ci−cj)ϵ

2k+1+(jci−icj)ϵ
2k

(in the seventh case with k ̸= j+1 and eighth case) or (ci−cj)ϵ
2k+1+(jci−icj+

1)ϵ2k (in the seventh case with k = j + 1). Hence this implies (aϵbϵcϵ)ijk ̸= 0
for ϵ ∈ (0, ϵ0). �

From the above proof, we can summarize the following changing rules for
each violation of the seven conditions:
Violation of restriction 1) then r1 → r1,ϵ = r1 + ϵ,
Violation of restriction 2) then r2 → r2,ϵ = r2 + ϵ2,
Violation of restriction 3) then r1 → r1,ϵ = r1 + ϵ and r2 → r2,ϵ = r2 + ϵ2,

Violation of restriction 4) then ci → ci,ϵ =

{
ci, if ci ̸= 0
ϵ, if ci = 0

Violation of restriction 5) then (ac)ij → (aϵcϵ)ij , (a1, a2, . . . , an) → (a1 + ϵ2 +
ϵ, a2 + ϵ2 + 2ϵ, . . . , an + ϵ2 + nϵ) with the same ci,ϵ as in the violation of 4)
Violation of restriction 6) then (bc)ij → (bϵcϵ)ij , (b1, b2, . . . , bn) → (b1+ϵ, b2+
ϵ3, . . . , bn + ϵ2n−1) with the same ci,ϵ as in the violation of 4)
Violation of restriction 7) then (abc)ijk → (aϵbϵcϵ)ijk, with the same ai,ϵ, bi,ϵ,
ci,ϵ in the violation 4), 5), and 6).
As an additional remark, we don’t need to change all values of ai, bi for the
violation of 5) or 6); we only need to change the coefficients ai, bi at the maximal
indices set coming from the {ij}, {ijk} in the violation of 5), 6), and 7).

Remark 3. The case clipped by two half spaces encounters three con-
ditions. We can avoid each condition by changing : 1) r1 → r1 + ϵ; 2)
ci = 0 → ϵ; 3) (a1, a2, . . . , an) → (a1 + ϵ2 + ϵ, a2 + ϵ2 + 2ϵ, . . . , an + ϵ2 + nϵ) or
→ (a1 + ϵ, a2 + ϵ3, . . . , an + ϵ2n−1). For the case clipped by one halfspace, only
one change rule 2) is necessary.

5. Two ϵ-perturbation examples

Now we show two examples of the ϵ-perturbation Method.
Example 1. Let us calculate the volume of the region of [0, 1]3 that intersects
three halfspaces H+

1 = {x| − x1 + x2 ≥ 0}, H+
2 = {x| − 2x1 + x2 ≥ 0}, and

H+
3 = {x| − x1 + 2x2 ≥ 0}.
These three halfspaces do not satisfy the seven conditions, so we must apply

the ϵ-perturbation method. Restrictions 1), 2), 3), 4) are not satisfied. Hence
we have to change gi(x) → gi,ϵ(x) while only changing r1 = 0 → ϵ, r2 = 0 → ϵ2,
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and c3 = 0 → ϵ, i.e., H+
1,ϵ = {x| −x1+x2+ϵ ≥ 0}, H+

2,ϵ = {x| −2x1+x2+ϵ2 ≥
0}, and H+

3,ϵ = {x| − x1 + 2x2 + ϵx3 ≥ 0}.
There are four vertices satisfying vϵ ∈ F 0 ∩ H+

1,ϵ ∩ H+
2,ϵ ∩ H+

3,ϵ: those are

v1,ϵ = (0, 0, 0),v2,ϵ = (0, 0, 1),v3,ϵ = (0, 1, 0),v4,ϵ = (0, 1, 1), and no vertices
satisfy vϵ ∈ F 1 ∩H1,ϵ ∩H+

2,ϵ ∩H+
3,ϵ, and there are three vertices satisfying vϵ ∈

F 1 ∩H+
1,ϵ ∩H2,ϵ ∩H+

3,ϵ: those are v5,ϵ = ( 1+ϵ2

2 , 1, 0),v6,ϵ = ( 1+ϵ2

2 , 1, 1),v7,ϵ =

( ϵ
2

2 , 0, 1), and no vertices satisfy vϵ ∈ F 2 ∩H1,ϵ ∩H2,ϵ ∩H+
3,ϵ.

Then v1,ϵ lays on H3, so Nv1,ϵ = 0, where Nv denotes each sigma term given

by a vertex v in the formula (2). Therefore we get the final clipped volume 1
4

from the following calculation:

vol ([0, 1]3 ∩H+
1,ϵ ∩H+

2,ϵ ∩H+
3,ϵ)

=
∑

v∈{v2,ϵ,v3,ϵ,v4,ϵ}

Nv +
∑
v∈∅

Nv +
∑

v∈{v5,ϵ,v6,ϵ,v7,ϵ}

Nv +
∑
v∈∅

Nv,

=− ϵ2

12
− 2

3ϵ
+

(2 + ϵ)3

12ϵ
+

(3− ϵ2)3

72ϵ
− (3 + 2ϵ− ϵ2)3

72ϵ
+

ϵ2(2− ϵ)3

72
,

=
1

4
+

ϵ2

2
− ϵ5

72
→ 1

4
(when ϵ → 0).

In fact, conditions 5), 6), 7) are also violated. However the small change
of H3,ϵ implies the satisfaction of the remaining conditions, i.e., we can use
(acϵ)ij , (bcϵ)ij , (abcϵ)123 instead of (aϵcϵ)ij , (bϵcϵ)ij , (aϵbϵcϵ)123 for easy cal-
culation in this example.

Note that the limit point of v2,ϵ,v7,ϵ lays on H3, so we can naturally predict
that limϵ→0 Nv2,ϵ , Nv7,ϵ = 0. In general, whether the good clipping conditions
are satisfied or not, if the limit point of vϵ lays on the last auxiliary hyperplane,
we can see that limϵ→0 Nvϵ

= 0 is true by Section 3.3 in [2].

Remark 4. If we choose three halfspaces in [0, 1]3 as H+
1 = {x| 3x1+4x2+

5x3−1 ≥ 0}, H+
2 = {x| −6x1−8x2−10x3+7 ≥ 0}, and H+

3 = {x| x3− 1
5 ≥ 0},

then condition 7) is violated, i.e.,

(abc)123 =

∣∣∣∣∣∣
3 −6 0
4 −8 0
5 −10 1

∣∣∣∣∣∣ = 0.

Additionally, we know

(abcϵ)123 =

∣∣∣∣∣∣
3 −6 ϵ
4 −8 ϵ
5 −10 1

∣∣∣∣∣∣ ≡ 0, and

∣∣∣∣∣∣
ϵ2 + ϵ+ 3 ϵ− 6 ϵ
ϵ2 + 2ϵ+ 4 ϵ2 − 8 ϵ
ϵ2 + 3ϵ+ 5 ϵ3 − 10 1

∣∣∣∣∣∣ ≡ 0.

Hence this case needs the perturbation rule of Theorem 3.2:

(aϵbϵcϵ)123 =

∣∣∣∣∣∣
ϵ2 + ϵ+ 3 ϵ− 6 ϵ
ϵ2 + 2ϵ+ 4 ϵ3 − 8 ϵ
ϵ2 + 3ϵ+ 5 ϵ5 − 10 1

∣∣∣∣∣∣ ̸= 0.
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Example 2. Let us calculate the volume of the region of [0, 1]3 that intersects
three halfspaces H+

1 = {x| 3x1 +4x2 +5x3 − 1 ≥ 0}, H+
2 = {x| − 6x1 − 8x2 −

10x3 + 7 ≥ 0}, and H+
3 = {x| x3 − 1

5 ≥ 0}.
These three halfspaces violate conditions 4), 5), 6), and 7). More exactly

ci = 0 for i = 1, 2, and (ac)ij , (bc)ij = 0 for i = 1, j = 2, and (abc)123 = 0.
Hence we must change gi(x) → gi,ϵ(x) with changing of g1(x) → g1,ϵ(x) =
(ϵ2 + ϵ + 3)x1 + (ϵ2 + 2ϵ + 4)x2 + (ϵ2 + 3ϵ + 5)x3 − 1, g2(x) → g2,ϵ(x) =
(ϵ−6)x1+(ϵ3−8)x2+(ϵ5−10)x3+7, and g3(x) → g3,ϵ(x) = ϵx1+ϵx2+x3− 1

5 .

No vertices satisfy vϵ ∈ F 0 ∩ H+
1,ϵ ∩ H+

2,ϵ ∩ H+
3,ϵ, and no vertices satisfy

vϵ ∈ F 1∩H1,ϵ∩H+
2,ϵ∩H+

3,ϵ, and one vertex satisfies vϵ ∈ F 1∩H+
1,ϵ∩H2,ϵ∩H+

3,ϵ,

that is v1,ϵ = (0, 0, 7
10−ϵ5 ), and no vertices satisfy vϵ ∈ F 2 ∩H1,ϵ ∩H2,ϵ ∩H+

3,ϵ.

Therefore we get the final clipped volume 25
576 from the following calculation:

vol ([0, 1]3 ∩H+
1,ϵ ∩H+

2,ϵ ∩H+
3,ϵ)

=
∑
v∈∅

Nv +
∑
v∈∅

Nv +
∑

v=v1,ϵ

Nv +
∑
v∈∅

Nv,

=
(25 + ϵ5)3

750(10− ϵ5)(6− 11ϵ+ ϵ6)(8− 10ϵ− ϵ3 + ϵ6)
→ 25

576
.

We have considered three dimensional cubes in these examples. However
the volume formula applies to any dimension. Our ϵ-perturbation method is
just one way of overcoming the conditions. We leave the problems open to
find other efficient ways to overcome these conditions with three or more half
spaces.
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