• Title/Summary/Keyword: hydrazine method

Search Result 86, Processing Time 0.023 seconds

Size and Dispersion Characteristics of Silver Nanoparticles Prepared Using Liquid Phase Reduction Method (액상환원법으로 제조한 은 나노입자의 크기와 분산특성)

  • Lee, Jong Jib
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.5
    • /
    • pp.10-16
    • /
    • 2016
  • This work investigates the size and dispersion characteristics of silver nanoparticles synthesized by a liquid phase reduction method using PAA. The experimental variables were the molecular weight and doses of the PAA, reducing agent, dispersant, and organic solvent (ethanol-acetone). UV-visible spectrophotometer results confirm the formation of the silver particles, and SEM indicates size in the nanometer range. As the ultrasonication time increases, there is a tendency toward smaller agglomerates of nanoparticles. The agglomerates were dispersed into 1-5 agglomerates of particles by ultrasonication for 3 hours or more. Relatively spherical nanoparticles were produced with a completely homogeneous dispersion and size of 49.56-85.75 nm by ultrasonication using BYK-192, a dispersant containing copolymer with a pigment affinic group. The average size of the silver nanoparticles was increased to 36.82, 50.66, and 56.06 nm with increasing molecular weight of PAA. Also, the size of the nanoparticles increased with the capping of PAA on the surfaces of the nanoparticles when increasing the amount of PAA. The addition of hydrazine as a reducing agent produced relatively small particles because many nuclei were created by the reduction reaction. The ethanol-acetone solvent helped with the regular arrangement of the silver nanoparticles.

Plume Behavior Study of Green FLP-106 ADN Thruster Using DSMC Method (직접모사법을 이용한 친환경 FLP-106 ADN 추력기의 배기가스 거동 연구)

  • Kuk, Jung Won;Lee, Kyun Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.9
    • /
    • pp.649-657
    • /
    • 2019
  • Hydrazine, which is used as a representative monopropellant, is an extremely poisonous substance and has a disadvantage that it is harmful to the human body and is very difficult to handle. In recent years, research on the development of non-toxic and environmentally friendly propellants has attracted much attention. Ammonium dinitramide(ADN) based propellant developed by Swedish Space Corporation has superior performance to hydrazine and has been commercialized through performance verification in space environment. On the other hand, the exhaust gas from a thruster nozzle collides with a satellite while it is spreading in the vacuum space, thermal load and surface contamination may occur and may reduce the performance and lifetime of the satellite. However, a study on the effect of the exhaust gas of the green propellant thruster on the satellite has not been conducted in earnest yet. Therefore, the exhaust gas behavior in space was analyzed in this study for the ADN based green monopropellant using Navier-Stokes equations and the DSMC method. As a result, it can be expected to be used as design validation data in the development of satellite when using the ADN based green monopropellant.

KSLV-I 하이드라진 추력기 제어기의 진동 해석 및 검증 시험

  • Kim, Ji-Hun;Jung, Ho-Lak;Jeon, Sang-Woon;Choi, Hyung-Don
    • Aerospace Engineering and Technology
    • /
    • v.4 no.2
    • /
    • pp.203-208
    • /
    • 2005
  • Electronic components for space launch vehicles are exposed to a severe vibrational environment at launch and flight. The structural reliability of each component can be verified using mathematical approaches. In order to verify the structural reliability, an important parameter is the natural frequency of PCB(Printed Circuit Board) assembly mounted electronic components on and housing mounted PCB assembly in. In this paper, in order to find natural frequencies of PCB assemblies and the housing of hydrazine TCU(Thruster Control Unit), FEM(Finite Element Method) is adapted. The analytical result of FEM is verified by experimental method.

  • PDF

Facile Fabrication of Flexible In-Plane Graphene Micro-Supercapacitor via Flash Reduction

  • Kang, Seok Hun;Kim, In Gyoo;Kim, Bit-Na;Sul, Ji Hwan;Kim, Young Sun;You, In-Kyu
    • ETRI Journal
    • /
    • v.40 no.2
    • /
    • pp.275-282
    • /
    • 2018
  • Flash reduction of graphene oxide is an efficient method for producing high quality reduced graphene oxide under room temperature ambient conditions without the use of hazardous reducing agents (such as hydrazine and hydrogen iodide). The entire process is fast, low-cost, and suitable for large-scale fabrication, which makes it an attractive process for industrial manufacturing. Herein, we present a simple fabrication method for a flexible in-plane graphene micro-supercapacitor using flash light irradiation. All carbon-based, monolithic supercapacitors with in-plane geometry can be fabricated with simple flash irradiation, which occurs in only a few milliseconds. The thinness of the fabricated device makes it highly flexible and thus useful for a variety of applications, including portable and wearable electronics. The rapid flash reduction process creates a porous graphene structure with high surface area and good electrical conductivity, which ultimately results in high specific capacitance ($36.90mF\;cm^{-2}$) and good cyclic stability up to 8,000 cycles.

A Study on the Variation of Vitamin C Content in Cooked Spinach by the Cookery Method. (시금치나물의 조리방법에 따른 Vitamin C 함량변화에 관한 연구)

  • 김양희
    • Journal of the Korean Home Economics Association
    • /
    • v.11 no.1
    • /
    • pp.44-56
    • /
    • 1973
  • The effect of the temperature and the time of scalding, and the addition of various seasoning on the remaining % of total Vitamin C contained in Spinach (Spinacia oleracea) was studied and discussed by means of chemical kinetics. The quantitative measurements of total Vitamin C were made by 2,4-dinitrophenyl hydrazine (DNPH) method with Clinical Electrophotometer (Fisher). The sample spinach contains 39.88mg. % of total vitamin C on the average, and the ratio of oxidized and reduced forms of Vitamin C is 1 : 4.7. When the sample spinach was scalded, the kinetics of the decrease of the remaining total vitamin C. % was observed to follow the first order reactions regardless of the temperatures applied (i,e. 70$^{o}$ , 80$^{o}$ , 90$^{o}$ and 100$^{o}$ ) with half-life range of 2.10 - 1.47 minutes. In the case of the addition of various seasonings, the addition of various seasonings, the kinetics remaining Vitamin C % showed to be the zero order reactions regardless of the kinds of seasonings and storage temperatures. With the addition of seasonings, the stability of Vitamin C was found to be increased in the order table salt+sesame oil+vinegar+soybean sauce, without seasoning, table salt+sesame oil, table salt+sesame oil+soybean sauce.

  • PDF

Study of Hydrazine-Bromine Reaction in Sulfuric Acid Media (히드라진과 브롬의 반응의 메카니즘에 관한연구)

  • Q. Won Choi;Byoung Bin Park
    • Journal of the Korean Chemical Society
    • /
    • v.19 no.6
    • /
    • pp.403-407
    • /
    • 1975
  • The rate constant for the $N_2H_4-Br_2$ reaction has been measured in sulfuric acid media by direct mixing method and chronopotentiometric method. The former gave 105 mole-1 l sec-1 whereas the latter 103 mole-1 l sec-1. It has been inferred that the former represents the rate constant for $N_2H_4-Br_2$ {\rightarrow} $N_2H_2$ and the latter for $N_2H_2+Br_2$ {\rightarrow} X. When the concentrations of KBr and $H_2SO_4$ are both high, drastic reduction of rate constant has been observed.

  • PDF

Gas Sensing Behaviors of SnO2:Cu Nanostructures for CH4, CH3CH2CH3 Gas (SnO2:Cu 나노 구조물의 CH4, CH3CH2CH3 가스 감응 특성)

  • Lee, Ji-Young;Yu, Yoon-Sic;Yu, Il
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.12
    • /
    • pp.974-978
    • /
    • 2012
  • The effect of Cu coating on the sensing properties of nano $SnO_2:Cu$ based sensors for the $CH_4$, $CH_3CH_2CH_3$ gas was studied. This work was focussed on investigating the change of sensitivity of nano $SnO_2:Cu$ based sensors for $CH_4$, $CH_3CH_2CH_3$ gas by Cu coating. Nano sized $SnO_2$ powders were prepared by solution reduction method using stannous chloride($SnCl_2{\cdot}2H_2O$), hydrazine($N_2H_2$) and NaOH and subsequent heat treatment. XRD patterns showed that nano $SnO_2$ powders with rutile structure were grown with (110), (101), (211) dominant peak. The particle size of nano $SnO_2:Cu$ powders at 8 wt% Cu was about 50 nm. $SnO_2$ particles were found to contain many pores, according to SEM analysis. The sensitivity of nano $SnO_2:Cu$ based sensors was measured for 5 ppm $CH_4$ gas and $CH_3CH_2CH_3$ gas at room temperature by comparing the resistance in air with that in target gases. The sensitivity for both $CH_4$ and $CH_3CH_2CH_3$ gases was improved by Cu coating on the nano $SnO_2$ surface. The response time and recovery time of the $SnO_2:Cu$ gas sensors for the $CH_4$ and $CH_3CH_2CH_3$ gases were 18~20 seconds, and 13~15 seconds, respectively.

Preparation of Submicron Nickel Powders with Non-aqueous Solvent In Microwave-Assisted Reduction Method (비수계 용매를 사용하는 마이크로파 환원법에 의한 서브마이크론 니켈 분말의 합성)

  • Jeon, Seung Yup;Kim, Jae-Hwan;Park, Na Yi;Park, Hoy Yul;Lee, Gun-Dae;Hong, Seong-Soo;Park, Seong Soo
    • Applied Chemistry for Engineering
    • /
    • v.18 no.4
    • /
    • pp.320-325
    • /
    • 2007
  • Nickel powders were prepared from an aqueous nickel acetate solution and hydrazine hydrate using diethanolamine as the nonaqueous organic solvent in the conventional and microwave synthetic method. It was investigated that microwave non-thermal effect and synthetic condition affect the preparation of nickel powders by means of X-ray diffractometry, scanning electron microscopy, thermal gravymetry analysis, and X-ray photoelectron spectroscopy analysis. Compared with the conventional synthetic method, less of aggregation, smaller particle size, and more uniform distribution of particle size were obtained in the microwave synthetic method due to the non-thermal effect of microwaves.

Preparation of Gas Sensors with Nanostructured SnO2 Thick Films with Different Pd Doping Concetrations by an Ink Dropping Method

  • Yoon, Hee Soo;Kim, Jun Hyung;Kim, Hyun Jong;Lee, Ho Nyun;Lee, Hee Chul
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.3
    • /
    • pp.243-248
    • /
    • 2017
  • Pd-doped $SnO_2$ thick film with a pure tetragonal phase was prepared on patterned Pt electrodes by an ink dropping method. Nanostructured $SnO_2$ powder with a diameter of 10 nm was obtained by a modified hydrazine method. Then the ink solution was fabricated by mixing water, glycerol, bicine and the Pd-doped $SnO_2$ powder. When the Pd doping concentration was increased, the grain size of the Pd-doped $SnO_2$ thick film became smaller. However, an agglomerated and extruded surface morphology was observed for the films with Pd addition over 4 wt%. The orthorhombic phase disappeared even at a low Pd doping concentration and a PdO peak was obtained for a high Pd doping concentration. The crack-free Pd-doped $SnO_2$ thick films were able to successfully fill the $30{\mu}m$ gap of the patterned Pt electrodes by the optimized ink dropping method. The prepared 3 wt% Pd-doped $SnO_2$ thick films showed monoxide gas responses ($R_{air}/R_{CO}$) of 4.0 and 35.6 for 100 and 5000 ppm, respectively.

One Pot Four-Component Synthesis of Novel Substituted 2-Phenyl-4(3H) Quinazolinones Using Recyclable Nanocrystalline CuMnO3 Catalyst

  • Borhade, A.V.;Tope, D.R.;Gare, G D.;Dabhade, G.B.
    • Journal of the Korean Chemical Society
    • /
    • v.61 no.4
    • /
    • pp.157-162
    • /
    • 2017
  • In the present study, nanocrystalline mixed metal oxide, $CuMnO_3$ catalyst have been synthesized by mechanochemical method with green chemistry approach. The synthesized catalyst was characterized by analytical techniques including FTIR, XRD, SEM, TEM and BET surface area. The synthesized catalyst shows high surface area is $121.06m^2/g$ with particle size 18 nm. The one pot four component synthesis of substituted 2-phenyl-4(3H) quinazolinone from the reaction of anthranilic acid, benzoyl chloride, hydrazine hydrate and substituted benzaldehyde in presence of $CuMnO_3$ nanocatalyst has been carried out. It affords the corresponding products with high yield (76-95%) in very short reaction time. All the obtained products were characterized with $^1HNMR$, $^{13}CNMR$, FTIR and EIMS.