References
- G. Xiong, C. Meng, R.G. Reifenberger, P.P. Irazoqui, and T.S. Fisher, "A Review of Graphene-Based Electrochemical Microsupercapacitors," Electroanal., vol. 26, no. 1, Jan. 2014, pp. 30-51. https://doi.org/10.1002/elan.201300238
- M. Beidaghi and Y. Gogotsi, "Capacitive Energy Storage in Micro-Scale Devices: Recent Advances in Design and Fabrication of Micro-Supercapacitors," Energy Environ. Sci., vol. 7, no. 3, 2014, pp. 867-884. https://doi.org/10.1039/c3ee43526a
- K. Wang, W. Zou, B. Quan, A. Yu, H. Wu, and P. Jang, "An All-Solid-State Flexible Micro-Supercapacitor on a Chip," Adv. Energy Mater., vol. 1, no. 6, Nov. 2011, pp. 1068-1072. https://doi.org/10.1002/aenm.201100488
- Z. Liu et al., "Ultraflexible in-Plane Micro-Supercapacitors by Direct Printing of Solution-Processable Electrochemically Exfoliated Graphene," Adv. Mater., vol. 28, no. 11, Mar. 2016, pp. 2217-2222. https://doi.org/10.1002/adma.201505304
- Z.-S. Wu, S. Yang, L. Zhang, J.B. Wagner, X. Feng, and K. Mullen, "Binder-Free Activated Graphene Compact Films for All-Solid-State Micro-Supercapacitors with High Areal and Volumetric Capacitances," Energy Storage Mater., vol. 1, no. 11, Nov. 2015, pp. 119-126. https://doi.org/10.1016/j.ensm.2015.09.004
- J.J. Yoo et al., "Ultrathin Planar Graphene Supercapacitors," Nano Lett., vol. 11, no. 4, 2011, pp. 1423-1427. https://doi.org/10.1021/nl200225j
- H. Hu, K. Zhang, S. Li, S. Jia, and C. Ye, "Flexible, in- Plane, and All-Solid-State Micro-Supercapacitors Based on Printed Interdigital Au/Polyaniline Network Hybrid Electrodes on a Chip," J. Mater. Chem. A, vol. 2, no. 48, 2014, pp. 20916-20922. https://doi.org/10.1039/C4TA05345A
- Z.S. Wu, K. Parvez, X. Feng, and K. Mullen, "Graphene- Based in-Plane Micro-Supercapacitors with High Power and Energy Densities," Nature Commun., vol. 4, 2013, p. 2487. https://doi.org/10.1038/ncomms3487
-
M. Xue et al., "Microfluidic Etching for Fabrication of Flexible and All-Solid-State Micro Supercapacitor Based on
$MnO_2$ Nanoparticles," Nanoscale, vol. 3, no. 7, 2011, pp. 2703-2708. https://doi.org/10.1039/c0nr00990c - J. Chmiola, C. Largeot, P.-L. Taberna, P. Simon, and Y. Gogotsi, "Monolithic Carbide-Derived Carbon Films for Micro-Supercapacitors," Sci., vol. 328, no. 5977, Apr. 2010, pp. 480-483. https://doi.org/10.1126/science.1184126
- S.K. Kim, H.-J. Koo, A. Lee, and P.V. Braun, "Selective Wetting-Induced Micro-Electrode Patterning for Flexible Micro-Supercapacitors," Adv. Mater., vol. 26, no. 30, Aug. 2014, pp. 5108-5112. https://doi.org/10.1002/adma.201401525
- B. Yao et al., "Paper-Based Solid-State Supercapacitors with Pencil-Drawing Graphite/Polyaniline Networks Hybrid Electrodes," Nano Energy, vol. 2, no. 6, 2013, pp. 1071- 1078. https://doi.org/10.1016/j.nanoen.2013.09.002
- X. Liu, T. Qian, N. Xu, J. Zhou, J. Guo, and C. Yan, "Preparation of on Chip, Flexible Supercapacitor with High Performance Based on Electrophoretic Deposition of Reduced Graphene Oxide/Polypyrrole Composites," Carbon, vol. 92, 2015, pp. 348-353. https://doi.org/10.1016/j.carbon.2015.05.039
- L. Peng, X. Peng, B. Liu, C. Wu, Y. Xie, and G. Yu, "Ultrathin Two-Dimensional MnO2/Graphene Hybrid Nanostructures for High-Performance, Flexible Planar Supercapacitors," Nano Lett., vol. 13, no. 5, 2013, pp. 2151-2157. https://doi.org/10.1021/nl400600x
- M. Beidaghi and C. Wang, "Micro-Supercapacitors Based on Interdigital Electrodes of Reduced Graphene Oxide and Carbon Nanotube Composites with Ultrahigh Power Handling Performance," Adv. Funct. Mater., vol. 22, no. 21, Nov. 2012, pp. 4501-4510. https://doi.org/10.1002/adfm.201201292
- J. Li, F. Ye, S. Vaziri, M. Muhammed, M.C. Lemme, and M. Ostling, "Efficient Inkjet Printing of Graphene," Adv. Mater., vol. 25, no. 29, 2013, pp. 3985-3992. https://doi.org/10.1002/adma.201300361
- G. Sun, J. An, C.K. Chua, H. Pang, J. Zhang, and P. Chen, "Layer-by-Layer Printing of Laminated Graphene-Based Interdigitated Microelectrodes for Flexible Planar Micro- Supercapacitors," Electrochem. Commun., vol. 51, Feb. 2015, pp. 33-36. https://doi.org/10.1016/j.elecom.2014.11.023
- W. Gao et al., "Direct Laser Writing of Micro-Supercapacitors on Hydrated Graphite Oxide Films," Nature Nanotechn., vol. 6, no. 8, 2011, pp. 496-500. https://doi.org/10.1038/nnano.2011.110
- M.F. El-Kady and R.B. Kaner, "Scalable Fabrication of High-Power Graphene Micro-Supercapacitors for Flexible and On-chip Energy Storage," Nature Commun., vol. 4, 2013, p. 1475. https://doi.org/10.1038/ncomms2446
-
L. Cao et al., "Direct Laser-Patterned Micro-Supercapacitors from Paintable
$MoS_2$ Films," Small, vol. 9, no. 17, Sept. 2013, pp. 2905-2910. https://doi.org/10.1002/smll.201203164 - R.-Z. Li et al., "High-Rate in-Plane Micro-Supercapacitors Scribed onto Photo Paper Using in Situ Femtolaser-Reduced Graphene Oxide/Au Nanoparticle Microelectrodes," Energy Environ. Sci., vol. 9, no. 4, 2016, pp. 1458-1467. https://doi.org/10.1039/C5EE03637B
- Z. Peng, J. Lin, R. Ye, E.L.G. Samuel, and J.M. Tour, "Flexible and Stackable Laser-Induced Graphene Supercapacitors," ACS Appl. Mater. Interfaces., vol. 7, no. 5, Feb. 2015, pp. 3414-3419. https://doi.org/10.1021/am509065d
- S.-H. Park and H.-S. Kim, "Environmentally Benign and Facile Reduction of Graphene Oxide by Flash Light Irradiation," Nanotechnol., vol. 26, no. 20, May 2015, p. 205601. https://doi.org/10.1088/0957-4484/26/20/205601
- Y. Xue, L. Zhua, H. Chen, J. Qu, and L. Dai, "Multiscale Patterning of Graphene Oxide and Reduced Graphene Oxide for Flexible Supercapacitors," Carbon, vol. 92, Oct. 2015, pp. 305-310. https://doi.org/10.1016/j.carbon.2015.04.046
- J. Yan et al., "Advanced Asymmetric Supercapacitors Based on Ni(Oh)2/Graphene and Porous Graphene Electrodes with High Energy Density," Adv. Funct. Mater., vol. 22, no. 12, 2012, pp. 2632-2641. https://doi.org/10.1002/adfm.201102839
- G. Eda, G. Fanchini, and M. Chhowalla, "Large-Area Ultrathin Films of Reduced Graphene Oxide as a Transparent and Flexible Electronic Material," Nature Nanotechn., vol. 3, no. 5, 2008, pp. 270-274. https://doi.org/10.1038/nnano.2008.83
- A.C. Ferrari et al., "Raman Spectrum of Graphene and Graphene Layers," Phys. Rev. Lett., vol. 97, no. 18, Oct. 2006, p. 187401. https://doi.org/10.1103/PhysRevLett.97.187401
- J. Lin et al., "3-Dimensional Graphene Carbon Nanotube Carpet-Based Microsupercapacitors with High Electrochemical Performance," Nano Lett., vol. 13, no. 1, Jan. 2013, pp. 72-78. https://doi.org/10.1021/nl3034976
- Q. Cheng, J. Tang, J. Ma, H. Zhang, N. Shinya, and L.-C. Qin, "Graphene and Carbon Nanotube Composite Electrodes for Supercapacitors with Ultra-High Energy Density," Phys. Chem. Chem. Phys., vol. 13, no. 39, 2011, pp. 17615-17624. https://doi.org/10.1039/c1cp21910c
- X. Wang et al., "Three-Dimensional Hierarchical GeSe2 Nanostructures for High Performance Flexible All-Solid- State Supercapacitors," Adv. Mater., vol. 25, no. 10, Mar. 2013, pp. 1479-1486. https://doi.org/10.1002/adma.201204063
Cited by
- Light- and space-adaptable display vol.19, pp.4, 2018, https://doi.org/10.1080/15980316.2018.1524798
- Graphene‐Based Planar Microsupercapacitors: Recent Advances and Future Challenges vol.4, pp.1, 2019, https://doi.org/10.1002/admt.201800200
- Facile Synthesis of Porous Carbon Via Self‐Activation of Potassium Acetate for High‐Performance Supercapacitor Electrodes with Excellent Cyclic Stability vol.7, pp.5, 2018, https://doi.org/10.1002/ente.201801090
- An ultrahigh sensitivity micro-cliff graphene wearable pressure sensor made by instant flash light exposure vol.13, pp.36, 2018, https://doi.org/10.1039/d1nr04333a
- Thermal reduction of graphite oxide in the presence of nitrogen-containing dyes vol.31, pp.6, 2021, https://doi.org/10.1007/s42823-021-00228-3
- 2D argyrodite LPSCl solid electrolyte for all-solid-state Li-ion battery using reduced graphene oxide template vol.23, pp.None, 2018, https://doi.org/10.1016/j.mtener.2021.100913