Preparation of Submicron Nickel Powders with Non-aqueous Solvent In Microwave-Assisted Reduction Method

비수계 용매를 사용하는 마이크로파 환원법에 의한 서브마이크론 니켈 분말의 합성

  • Jeon, Seung Yup (Division of Applied Chemical Engineering, Pukyong National University) ;
  • Kim, Jae-Hwan (Division of Applied Chemical Engineering, Pukyong National University) ;
  • Park, Na Yi (Division of Applied Chemical Engineering, Pukyong National University) ;
  • Park, Hoy Yul (Korea Electrotechnology Research Institute, Advanced Electrical Materials Group) ;
  • Lee, Gun-Dae (Division of Applied Chemical Engineering, Pukyong National University) ;
  • Hong, Seong-Soo (Division of Applied Chemical Engineering, Pukyong National University) ;
  • Park, Seong Soo (Division of Applied Chemical Engineering, Pukyong National University)
  • 전승엽 (부경대학교 응용화학공학부) ;
  • 김재환 (부경대학교 응용화학공학부) ;
  • 박나이 (부경대학교 응용화학공학부) ;
  • 박효열 (한국전기연구원 신소재응용연구그룹) ;
  • 이근대 (부경대학교 응용화학공학부) ;
  • 홍성수 (부경대학교 응용화학공학부) ;
  • 박성수 (부경대학교 응용화학공학부)
  • Received : 2007.04.10
  • Accepted : 2007.06.12
  • Published : 2007.08.10

Abstract

Nickel powders were prepared from an aqueous nickel acetate solution and hydrazine hydrate using diethanolamine as the nonaqueous organic solvent in the conventional and microwave synthetic method. It was investigated that microwave non-thermal effect and synthetic condition affect the preparation of nickel powders by means of X-ray diffractometry, scanning electron microscopy, thermal gravymetry analysis, and X-ray photoelectron spectroscopy analysis. Compared with the conventional synthetic method, less of aggregation, smaller particle size, and more uniform distribution of particle size were obtained in the microwave synthetic method due to the non-thermal effect of microwaves.

본 연구에서는 재래식 및 마이크로파 합성법을 통하여 비수계 유기용매인 diethanolamine을 용매로 하여 초산니켈 수용액과 히드라진 수화물로부터 니켈 분말을 합성하였다. X선 회절분석, 주사 전자현미경 분석, 열분석 및 X선 광전자 분광기 분석등을 통하여 마이크로파의 비열적 효과 및 반응 조건이 니켈분말의 합성에 미치는 영향을 조사하였다. 재래식 합성과 비교해보면, 마이크로파를 이용한 합성에서 마이크로파의 비열적 효과에 기인하여 상대적으로 응집이 적게 일어나고, 입자 크기는 작고, 입도 분포는 균일하였다.

Keywords

Acknowledgement

Supported by : 한국과학재단

References

  1. W. J. Tseng and S. Y. Lin, Effect of polymeric surfactant on flow behaviors of nickel-ethanol-isopropanol suspensions, Mater. Sci. Eng., A362, 160 (2003)
  2. S. H. Park, C. H. Kim, Y. C. Kang, and Y. H. Kim, Control of size and morphology in Ni particles prepared by spray pyrolysis, J. Mater. Sci. Lett., 22, 1537 (2003) https://doi.org/10.1023/A:1026290801907
  3. H. Shoji, Y. Nakano, H. Matsushita, A. Onoe, H. Kanai, and Y. Yamashita, Effect of heat treatment on dielectric properties of X7R designated MLCs with Ni internal electrodes, J. Mater. Syn. Process, 6, 415 (1998)
  4. A. Degen and J. Macek, Preparation of submicrometer nickel powders by the reduction from nonaqueous media, Nanostru. Mater., 12, 225 (1999) https://doi.org/10.1016/S0965-9773(99)00286-X
  5. Y. Koltypin, A. Fernandez, T. C. Rojas, J. Campora, P. Palma, R. Prozorov, and A. Gedanken, Encapsulation of nickel nanoparticles in carbon obtained by the sonochemical decomposition of $Ni(C_8H_{12})_2$, Chem, Mater., 11, 1331 (1999)
  6. M. S. Hegde, D. Larcher, L. Dupont, B. Beaudoiin, K. T. Elhsissen, and J. M. Tarascon, Synthesis and chemical reactivity of polyol prepared monodisperse nickel powders, Solid State Ionics, 93, 33 (1997)
  7. S. Komarnent, R. Pidugu, Q. H. Li, and R. Roy, Microwavehydrothermal processing of metal powders, J. Mater. Res., 10, 1687 (1995) https://doi.org/10.1557/JMR.1995.0995
  8. K. Yu, D. J. Kim, H. S. Chung, and H. Liang, Dispersed rodlike nickel powder synthesized by modified polyol process, Mater. Lett., 57, 3992 (2003) https://doi.org/10.1016/S0167-577X(03)00253-2
  9. J. Gao, F. Guan, Y. Zhao, W. Yang, Y. Ma, X. Lu, and J. Kang, Preparation of ultrafine nickel powder and its catalytic dehydrogenation activity, Mater. Chem. Phys., 71, 215 (2001) https://doi.org/10.1016/S0254-0584(01)00275-9
  10. H. G. Zheng, J. H. Liang, J. H. Zeng, and Y. T. Qian, Preparation of nickel nanopowders in ethanol-water system, Mater. Res. Bull., 36, 947 (2001)
  11. Y. D. Li, C. W. Li, H. R. Wang, L. Q. Li, and Y. T. Qian, Preparation of nickel ultrafine powder and crystalline film by chemical control reduction, Mater. Chem. Phys., 59, 88 (1999)
  12. M. S. Hegde, D. Larcher, L. Dupont, B. Beaudoin, K. Tekaia- Elhsissen, and J. M. Tarascon, Solid State Ionics, 93, 33 (1997)
  13. J. Macek and A. Degen, Fizika A, 4, 309 (1995)
  14. S. Caddick, Microwave assisted organic reactions, Tetrahedron, 51, 10403 (1995)
  15. K. S. Jung, J. H. Kwon, S. M. Shon, J. P. Ko, J. S. Shin, and S. S. Park, J. Mater. Sci., 39, 723 (2004) https://doi.org/10.1023/B:JMSC.0000011541.91490.88
  16. K. S. Jung, J. Y. Ro, J. Y. Lee, and S. S. Park, J. Mater. Sci., 20, 2203 (2001)
  17. A. Degen, J. Macek, Nanostruct. Mater., 12, 225 (1999) https://doi.org/10.1016/S0965-9773(99)00286-X
  18. J. Gao, F. Guan, Y. Zhao, W. Yang, Y. Ma, X. Lu, J. Hou, and J. Kang, Materials Chem. Phys., 71, 215 (2001) https://doi.org/10.1016/S0254-0584(01)00275-9
  19. Won Jo Hwa, Seong Yup Jun, Yoon Bok Lee, Hee Chan Park, Kwang Ho Kim, and Seong Soo Park, J. Korean Ind. Eng. Chem., 15, 429 (2004)