Efficient Synthesis of 1,3-Thiazole Derivatives from Arylidenethiosemicarbazones in the Presence of β-Cyclodextrin with Water

수용액과 β-Cyclodextrin 하에서 Arylidenethiosemicarbazone들로부터 1,3-Thiazole 유도체들의 효율적 합성

  • Park, Kyung-Jin (Department of Chemistry, Kunsan National University) ;
  • Bae, Sun Kun (Department of Chemistry, Kunsan National University)
  • Received : 2007.04.23
  • Accepted : 2007.06.20
  • Published : 2007.08.10

Abstract

2-Arylidenehydrazinyl-4-arylthiazole derivatives (9a-f) were prepared by the in situ formation of ${\beta}$-cyclodextrin complex of 2,4'-dibromoacetophenone (8) in water followed by the addition of arylidenethiosemicarbazones (7a-f) in 70~88% yield. The structures of the compounds 9a-f were elucidated by IR and $^1H-NMR$ spectral data. The role of ${\beta}$-cyclodextrin appears to activate the compound 7 and 8 and promote the reaction to complete in reduced reaction time.

수용액 상에서 ${\beta}$-cyclodextrin에 2,4'-dibromoacetophenone (8)을 반응시켜 착물을 형성한 후 arylidenethiosemicarbazone 7a-f를 가하여 2-arylidenehydrazinyl-4-arylthiazole 유도체들 9a-f를 70~88% 수율로 합성하였다. 합성한 새로운 화합물들 9a-f의 구조를 IR과 $^1H-NMR$ 스펙트럼 자료로 확인하였다. 이와 같은 실험결과 ${\beta}$-cyclodextrin의 역할은 반응물 7 및 8의 활성화로 반응을 촉진시켜 반응시간이 단축되는 것으로 나타났다.

Keywords

References

  1. A. Tsuruoka, Y. Kaku, H. Kakinuma, I. Tsukada, and T. Naito, Chem. Pharm. Bull., 45, 1169 (1997)
  2. K. Okumura, H. Saito, C. G. Shin, K. Umemura, and J. Yoshimura, Bull. Chem. Soc. Jpn., 71, 1863 (1998)
  3. T. Barf, R. Emond, G. Kurz, A. Nygren, R. Olsson, and P. Alberts, J. Med. Chem., 45, 3814 (2002)
  4. J. J. Harnett, V. Roubert, C. Dolo, C. Charnet, B. Spinnewyn, S. Cornet, A. Rlooand, J. G. Marin, D. Bigg, and P. E. Charbier, Bioorg. & Med. Chem. Lett. 14, 157 (2004) https://doi.org/10.1016/j.bmcl.2003.09.077
  5. R. Pereira, C. Gaudon, B. Lelesias, P. Germain, H. Gronemeyer, and R. De Lera, Bioorg. Med. Chem. Lett. 16, 49 (2006) https://doi.org/10.1016/j.bmcl.2005.09.060
  6. M. C. Bagley and C. Glover, Tetrahedron, 62, 66 (2006) https://doi.org/10.1016/j.tet.2005.09.134
  7. J. Das, C, Liu, R. V. Moquin, S. H. Spergel, K. W. Mclntyre, and D. J. Shuster, Bioorg. Med. Chem. Lett, 16, 3706 (2006) https://doi.org/10.1016/j.bmcl.2006.04.060
  8. L. Novak, J. Rohaly, and C. Szantay, OPP BRIEFS, 31, 693 (1999)
  9. S. C. Sinha, S. Dutta, and J. Sun, Tetrahedron Lett, 41, 8243 (2002) https://doi.org/10.1016/S0040-4039(00)01469-6
  10. R. Zao, S. Gove, J. E. Sundeen, and B. C. Chen, Tetrahedron Lett, 42, 2101 (2001) https://doi.org/10.1016/S0040-4039(01)00161-7
  11. T. Aoyama, S. Murata, I. Arai, Y. Sukuki, and M. Kodomori, Tetrahedron, 62, 1 (2006) https://doi.org/10.1016/S0040-4020(05)02083-1
  12. T. Yamane, H. Mitsudera, and T. Shundoh, Tetrahedron Lett, 45, 69 (2004) https://doi.org/10.1016/j.tetlet.2003.10.113
  13. M. Narender, M. S. Reddy, R. Sridhra, Y. V. D. Nageswar, and K. R. Rao, Tetrahdron Lett. 46, 5953 (2005) https://doi.org/10.1016/j.tetlet.2005.06.130
  14. S. K. Bae and H. T. Kim, J. Basic and Life Res. Sci., 3, 14 (2003)