DOI QR코드

DOI QR Code

Plume Behavior Study of Green FLP-106 ADN Thruster Using DSMC Method

직접모사법을 이용한 친환경 FLP-106 ADN 추력기의 배기가스 거동 연구

  • Kuk, Jung Won (Department of Aerospace Engineering, Sejong University) ;
  • Lee, Kyun Ho (Department of Aerospace Engineering, Sejong University)
  • Received : 2019.05.30
  • Accepted : 2019.08.20
  • Published : 2019.09.01

Abstract

Hydrazine, which is used as a representative monopropellant, is an extremely poisonous substance and has a disadvantage that it is harmful to the human body and is very difficult to handle. In recent years, research on the development of non-toxic and environmentally friendly propellants has attracted much attention. Ammonium dinitramide(ADN) based propellant developed by Swedish Space Corporation has superior performance to hydrazine and has been commercialized through performance verification in space environment. On the other hand, the exhaust gas from a thruster nozzle collides with a satellite while it is spreading in the vacuum space, thermal load and surface contamination may occur and may reduce the performance and lifetime of the satellite. However, a study on the effect of the exhaust gas of the green propellant thruster on the satellite has not been conducted in earnest yet. Therefore, the exhaust gas behavior in space was analyzed in this study for the ADN based green monopropellant using Navier-Stokes equations and the DSMC method. As a result, it can be expected to be used as design validation data in the development of satellite when using the ADN based green monopropellant.

대표적인 단일추진제로 사용되는 하이드라진은 극독성의 물질이므로 인체에 유해할 뿐만 아니라 취급이 매우 어렵다는 단점을 가지고 있다. 이를 대체하고자 최근에는 무독성의 친환경 추진제 개발 연구가 많은 관심을 받고 있다. 그중에서 스웨덴 우주공사(Swedish Space Corporation)에서 개발한 ammonium dinitramide(ADN) 계열 추진제는 하이드라진보다 우수한 성능을 가질 뿐만 아니라 우주환경에서의 성능검증을 통해 현재 상용화 단계에 이르렀다. 한편, 추력기 노즐에서 배출된 배기가스는 고진공의 우주 공간에서 확산하는 동안 위성체와 충돌할 경우 열 하중 및 표면 오염 등을 발생시켜 위성체의 성능과 수명을 감소시킬 수 있다. 하지만 친환경 추진제 추력기의 배기가스가 위성체에 미치는 영향에 대한 연구는 아직까지 본격적으로 수행되지는 않은 것으로 조사되었다. 따라서 본 연구에서는 Navier-Stokes 방정식과 직접모사법을 이용하여 ADN 계열 친환경 추진제에 대해 우주 공간에서의 배기가스 거동을 해석하고 하이드라진과 비교하였다. 이를 통해 향후 ADN 계열 친환경 추진제를 사용하는 위성체 개발 시 설계 검증자료로서 활용될 수 있을 것으로 기대된다.

Keywords

References

  1. Negri, M., Wilhelm, M., and Hendrich, C., "Technology Development for ADN-based Green Monopropellant Thrusters an Overview of the Rheform Project," 7th EUCASS, 2017.
  2. Choudhary, G., IIansen, H., Donkin, S., and Kirman, C., "Toxicological Profile for Hydrazines," The Agency for Toxic Substances and Disease Registry, 1997.
  3. Garfield, L., "China's Out of Control Space Station May Release a Toxic Chemical When It Crashes," Business Insider, 2018.
  4. Cervone, A., Torre, L., and Agostino, L. D., "Development of Hydrogen Peroxide Monopropellant Rockets," 42nd AIAA/ASME/SAE/ ASEE Joint Propulsion Conference & Exhibit, 2006.
  5. Spores, R. A., Masse, R., and Kimbrel, S., "GPIM AF-M315E Propulsion System," 51th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 2015.
  6. Anflo, K., and Crowe, B., "In Space Demonstration of an ADN based Propulsion System," 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 2011.
  7. Kim, H., and Lee, K. H., "Exhaust Plume Behavior Study of MMH-NTO Bipropellant Thruster," Journal of The Korean Society for Aeronautical and Space Sciences, Vol. 45, No. 4, 2017, pp. 300-309. https://doi.org/10.5139/JKSAS.2017.45.4.300
  8. Larsson, A., and Wingborg, N., "Green Propellants Based on Ammonium Dinitramide (ADN)," Advances in Spacecraft Technologies, 2011, pp. 141-156.
  9. Anflo, K., Moore, S., and King, P., "Expanding the ADN-based Monopropellant Thruster Family" 23rd Annual AIAA/USU Conference on Small Satellite, 2009.
  10. Kim, M. G., Kwon, O. J., Chung, C. H., and Yoon, S. J., "A DSMC Technique for Solving 2-D Rarefied Gas Flows on Unstructured Triangular Meshes," Journal of The Korean Society for Aeronautical and Space Sciences, Vol. 26, No. 8, 1998, pp. 20-30.
  11. Jeon, W. J., Baek, S. W., Park, J. H., and Ha, D. S., "Rocket Plume Analysis with DSMC Method," Journal of the Korean Society for Precision Engineering, Vol. 18, No. 5, 2014, pp. 54-61.
  12. BIRD, G. A., "Molecular Gas Dynamics and The Direct Simulation of Gas Flows," Oxford University Press Inc., 1994.
  13. Akhlaghi, H., "Study of Convergence Time for Rarefied Gas Simulations Using an Unstructured DSMC Solver," Numerical Heat Transfer Fundamentals, Part B, 0: 1-17, 2015.
  14. Lee, C. S., and Lee, K. H., "Analysis Study of Liquid Apogee Engine Plume for Geostationary Satellite," Journal of Aerospace System Engineering, Vol. 12, No. 5, 2018, pp. 8-15. https://doi.org/10.20910/JASE.2018.12.5.8
  15. Menter, F. R., Kuntz, M., and Langtry, R., "Ten Years of Industrial Experience with The SST Turbulence Model," Proceedings of the 4th International Symposium on Turbulence, Heat and Mass Transfer, 2003, pp. 625-632.
  16. Weiller, B. H., Barrie, J. D., Aitchison, K. A., and Chaffee, P. D., "Materials for Smart Systems," Materials Research Society, 1995, pp. 535-540.