• Title/Summary/Keyword: hydration energy

Search Result 184, Processing Time 0.029 seconds

The Changes of Physical Properties of Barley Grain at Various Polishing Yields during Hydration Process (도정수율별(搗精收率別) 보리의 수화공정중(水和工程中) 물성변화(物性變和)에 관(關)한 연구(硏究))

  • Mok, Chul-Kyoon;Nam, Young-Joong
    • Applied Biological Chemistry
    • /
    • v.26 no.1
    • /
    • pp.47-52
    • /
    • 1983
  • The size distribution and changes of volume and grain hardness of ‘Sedohadaka', waked barley of various polishing yields during hydration process at various temperatures were investigated, and were analyzed kinetically, Both major and minor diameter of barley grain decreased linearly during polishing, and the decreasing rate of major diameter was greater than that of minor diameter. The volume change of barley grain could be expressed as a power of hydration time, and a break point was found in case of non-polished barley. The changing rate of grain hardness followed the equation of a first-order reaction, and the reaction rate constant increased with decreasing polishing yields and at higher temperature in the range of $20{\sim}60^{\circ}C$. The activation energy of hardness change reaction of polished barley during hydration were ranged $5.1{\sim}7.8Kcal/mole$, and 13.3Kcal/mole of non-polished barley.

  • PDF

Temperature Crack Control Foundation in LG IPP Project (부공복합화력발전소 기계기초의 오돈균열제어)

  • 양주경;조경연;심재홍
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.309-312
    • /
    • 2000
  • Nonuniform temperature distribution due to hydration heat induces thermal stress in mass concrete. At early ages, such thermal stress may induce thermal cracks which can affect on the durability ad safety of the structure. Steel fiber reinforced concrete may be useful when a large amount of energy has to be absorbed, when a high tensile strength and reduced cracking are desirable, of an improvement of thermal conductivity is desirable. In LG IPP Project, the upper part(50cm) of turbine foundation was replaced with steel fiber reinforced concrete to reduce the thermal crack induced by hydration heat. It was shown that the thermal crack control could be successfully achieved by steel fiber reinforced concrete.

  • PDF

Mechanical Properties of Cement Mortar: Development of Structure-Property Relationships

  • Ghebrab, Tewodros Tekeste;Soroushian, Parviz
    • International Journal of Concrete Structures and Materials
    • /
    • v.5 no.1
    • /
    • pp.3-10
    • /
    • 2011
  • Theoretical models for prediction of the mechanical properties of cement mortar are developed based on the morphology and interactions of cement hydration products, capillary pores and microcracks. The models account for intermolecular interactions involving the nano-scale calcium silicate hydrate (C-S-H) constituents of hydration products, and consider the effects of capillary pores as well as the microcracks within the hydrated cement paste and at the interfacial transition zone (ITZ). Cement mortar was modeled as a three-phase material composed of hydrated cement paste, fine aggregates and ITZ. The Hashin's bound model was used to predict the elastic modulus of mortar as a three-phase composite. Theoretical evaluation of fracture toughness indicated that the frictional pullout of fine aggregates makes major contribution to the fracture energy of cement mortar. Linear fracture mechanics principles were used to model the tensile strength of mortar. The predictions of theoretical models compared reasonably with empirical values.

Ab initio and Vibrational Predissociation Studies on Methylammonium-(Water)4 Complex: Evidence for Multiple Cyclic and Non-cyclic Hydrogen-bonded Structures

  • Kim, Kwang-Yon;Han, Woon-Hui;Cho, Ung-In;Lee, Yuan T.;Boo, Doo-Wan
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.12
    • /
    • pp.2028-2036
    • /
    • 2006
  • The combined ab initio and vibrational predissociation (VP) spectroscopic studies on methylammonium-$(water)_4$ complex aimed at understanding the hydration behavior of an amphiphilic ion core are described. The ab initio calculations predicted eleven low-energy isomers forming cyclic, tripod, chain, and caged structures, and their relative stabilities, total hydration energies and thermodynamic functions at 298 K and 150 K. The excellent correlation between the observed VP spectra and ab initio spectra for bonded N-H, bonded O-H and free O-H stretches suggested co-existence of five cyclic isomers and two non-cyclic isomers in ion beam at 150 K, consistent with the trends of calculated Gibbs free energies.

Prediction of Relative Stability between TACE/Gelastatin and TACE/Gelastatin Hydroxamate

  • Nam, Ky-Youb;Han, Gyoon-Hee;Kim, Hwan-Mook;No, Kyoung-Tai
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.11
    • /
    • pp.3291-3296
    • /
    • 2010
  • A gelastatins (1), natural MMP inhibitors, and their hydroxamate analogues (2) in TACE enzyme evaluated for discovery of potent TACE inhibitors. We have employed molecular dynamics simulations to compute the relative free energy of hydration and binding to TACE for gelastatin (1) and its hydroxamate analogue (2). The relative free energy difference is directly described in this article using the free energy perturbation approach as a means to accurately predict the TACE inhibitor of gelastatin analogues. The results show that the good agreement between the experimental and theoretical relative free energies of binding, gelastatin hydroxamate (2) binds stronger to TACE by -3.37 kcal/mol. The desolvation energy costs significantly reduced binding affinity, hydroxamate group associated with high desolvation energy formed strong favorable interactions with TACE with more than compensated for the solvation costs and therefore led to an improvement in relative binding affinity.

Production of Rice Straw Based Cellulosic Ethanol Using Acidic Saccharification (산당화과정을 이용한 볏짚으로부터 셀룰로스 에탄올의 제조)

  • Lee, Seung-Bum;Jung, Soo-Kyung;Lee, Jae-Dong
    • Applied Chemistry for Engineering
    • /
    • v.21 no.3
    • /
    • pp.349-352
    • /
    • 2010
  • The production process of cellulosic ethanol from rice straw using acidic saccharification was studied in this experimental work. The hydration by ultrasonic energy and the acidic saccharification using 10~30 wt% of $H_2SO_4$ were performed as pretreatment processes. Also, 10~50 wt% of yeast for 3~6 days was used for fermentation process. The yield of cellulosic ethanol was decided in the fermentation process. The optimum pretreatment condition was 375W of ultrasonic power and 30 min of hydration time using 20 wt% of $H_2SO_4$ and 2 h of the acidic saccharification time. Finally, the optimum fermentation condition was at the condition of 30 wt% of yeast and 3 days of fermentation time.

Experimental Study on Fracture Behavior of Low-Heat Concrete, by Three-Point Bent Test (3점 휨시험에의한 저발열콘크리트의 파괴거동에 곤한 실험적 연구)

  • 조병완;박승국
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04a
    • /
    • pp.199-204
    • /
    • 1998
  • To analysis the failure character of Low-Heat concrete which is used to prevent the thermal crack caused by hydration heat, static loading test was performed by this test method, "Determination of the Fracture Energy of Motar and Concrete by Means of Three-Point Band Tests on Notched Beam" (suggested by RILEM 50-FMC Committe). This study compared and analysised the fracture energy of Mode I (opening mode), the most general pattern in the view of water-cemente ratio(W/C), compressive strength and age of Ordinary Portland Concrete and Low-Heat Concrete under the same mixture. The test results show that the case of Ordinary Portland Concrete and Low-Heat Concrete, low Water-Cemente ratio(W/C) cause the increase of fracture energy, and high failure-strength decrease failure-deflection, and the fracture energy of Low-Heat Concrete is similar to Ordinary Portland Concrete as the age increase. increase.

  • PDF

A Study on the Applicability of Estimation of Apparent Activation Energy of Blast Furnace Slag Contained Cement Using Calorimeter (열량계를 이용한 고로슬래그 혼입 페이스트의 겉보기 활성화 에너지 산정에 관한 연구)

  • Kim, Han-Sol;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.78-79
    • /
    • 2021
  • It is necessary to calculate Apparent Activation Energy(Ea) in order to apply the equivalent age formula to predict compressive strength using the maturity method. For carbon reduction, it is necessary to consider the change of Ea by condition of GGBFS concrete, which is widely used today. In this study, as a basic study for the design of the compressive strength model of GGBFS concrete, the apparent activation energy of the GGBFS mixed paste was calculated through a calorimeter. The experiment was carried out at a hydration temperature of 10 to 30℃ with a paste test specimen having a GGBFS content of 0 to 80%. As a result, the GGBFS replacement rate of the paste increased, and Ea tended to increase as the temperature decreased.

  • PDF

Performance of Magnesia Cement Using MgCO3 and Serpentine

  • Lee, Jong-Kyu;Soh, Jung-Sub
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.1
    • /
    • pp.116-121
    • /
    • 2016
  • The amount of carbon dioxide ($CO_2$) released while producing building materials is substantial and has been targeted as a leading contributor to global climate change. One of the most typical methods of reducing $CO_2$ in building materials is the addition of slag and fly ash, like pozzolan material another method is to reduce $CO_2$ production by developing carbon negative cement. MgO-based cement from the low-temperature calcination of magnesite required less energy and emitted less $CO_2$ than the manufacturing of Portland cements. It is also believed that adding reactive MgO to Portland-pozzolan cements can improve their performance and also increase their capacity to absorb atmospheric $CO_2$. In this study, basic research on magnesia cement using $MgCO_3$ and magnesium silicate ore (serpentine) as the main starting materials, as well as blast furnace slag for the mineral admixture, was carried out for industrial waste material recycling. In order to increase the overall hydration activity, $MgCl_2$ was also added. In the case of the addition of $MgCl_2$as accelerating admixture, there was a promoting effect on the compressive strength. This was found to be due to the production of needle-like dense Mg-Cl hydrates. Mgnesia cement has a high viscosity due to its high specific surface area therefore, when the PC-based dispersing agent was added at a level of more than 1.0%, it had the effect of improving fluidity. In particular, the addition of $MgCl_2$ in magnesia cement using $MgCO_3$and magnesium silicate ore (serpentine) as main starting materials led to a lower expansion ratio and an increase in the freeze-thaw resistance finally, the addition of $MgCl_2$ as accelerating admixture led to good overall durability.

Models for Hydration Heat Development and Mechanical Properties of Ultra High Performance Concrete (초고성능 콘크리트의 수화발열 및 역학적 특성 모델)

  • Cha, Soo-Won;Kim, Ki-Hyun;Kim, Sung-Wook;Park, Jung-Jun;Bae, Sung-Geun
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.3
    • /
    • pp.389-397
    • /
    • 2010
  • Concrete has excellent mechanical properties, high durability, and economical advantages over other construction materials. Nevertheless, it is not an easy task to apply concrete to long span bridges. That's because concrete has a low strength to weight ratio. Ultra high performance concrete (UHPC) has a very high strength and hence it allows use of relatively small section for the same design load. Thus UHPC is a promising material to be utilized in the construction of long span bridges. However, there is a possibility of crack generation during the curing process due to the high binder ratio of UHPC and a consequent large amount of hydration heat. In this study, adiabatic temperature rise and mechanical properties were modeled for the stress analysis due to hydration heat. Adiabatic temperature rise curve of UHPC was modeled superposing 2-parameter model and S-shaped function, and the Arrhenius constant was determined using the concept of equivalent time. The results are verified by the mock-up test measuring the temperature development due to the hydration of UHPC. In addition, models for mechanical properties such as elastic modulus, tensile strength and compressive strength were developed based on the test results from conventional load test and ultrasonic pulse velocity measurement.