References
- M. Schneider, M. Romer, M. Tschudin, and H. Bolio, "Sustainable Cement Production-Present and Future," Cem. Concr. Res., 41 [7] 642-50 (2011). https://doi.org/10.1016/j.cemconres.2011.03.019
- Jia Li, P. Tharakan, D. Macdonald, and X. Liang, "Technological, Economic and Financial Prospects of Carbon Dioxide Capture in the Cement Industry," Energy Policy, 61 1377-87 (2013). https://doi.org/10.1016/j.enpol.2013.05.082
- A. Santra and R. Sweatman, "Understanding the Long-Term Chemical and Mechanical Integrity of Cement in a CCS Environment," Energy Procedia, 4 5243-50 (2011). https://doi.org/10.1016/j.egypro.2011.02.503
- B. Kolani, L. Buffo-Lacarriere, A. Sellier, G. Escadeillas, L. Boutillon, and L. Linger, "Hydration of Slag-Blended Cements," Cem. Concr. Compos., 34 [9] 1009-18 (2012). https://doi.org/10.1016/j.cemconcomp.2012.05.007
- B. Uzal and L. Turanli, "Studies on Blended Cements Containing a High Volume of Natural Pozzolans," Cem. Concr. Res., 33 [11] 1777-81 (2003). https://doi.org/10.1016/S0008-8846(03)00173-X
- L. Turanli, B. Uzal, and F. Bektas, "Effect of Material Characteristics on the Properties of Blended Cements Containing High Volumes of Natural Pozzolans," Cem. Concr. Res., 34 [12] 2277-82 (2004). https://doi.org/10.1016/j.cemconres.2004.04.011
- J. Temuujin, A. van Riessen, and K. J. D. MacKenzie, "Preparation and Characterisation of Fly Ash Based Geopolymer Mortars," Constr. Build. Mater., 24 [10] 1906-10 (2010). https://doi.org/10.1016/j.conbuildmat.2010.04.012
- T. Tho-in, V. Sata, P. Chindaprasirt, and C. Jaturapitakkul, "Pervious High-Calcium Fly Ash Geopolymer Concrete," Constr. Build. Mater., 30 [5] 366-71 (2012). https://doi.org/10.1016/j.conbuildmat.2011.12.028
- D. L. Y. Kong and J. G. Sanjayan, "Effect of Elevated Temperatures on Geopolymer Paste, Mortar and Concrete," Cem. Concr. Res., 40 [2] 334-39 (2010). https://doi.org/10.1016/j.cemconres.2009.10.017
- E. N. Kani, A. Allahverdi, and J. L. Provis, "Efflorescence Control in Geopolymer Binders Based on Natural Pozzolan," Cem. Concr. Compos., 34 [1] 25-33 (2012). https://doi.org/10.1016/j.cemconcomp.2011.07.007
- E. M. Gartner and D. E. Macpee, "A Physico-Chemical Basis for Novel Cementitious Binders," Cem. Concr. Res., 41 [7] 736-49 (2011). https://doi.org/10.1016/j.cemconres.2011.03.006
- L. J. Vandeperre, M. Liska, and A. Al-Tabbaa, "Microstructures of Reactive Magnesia Cement Blends," Cem. Concr. Compos., 30 [8] 706-14 (2008). https://doi.org/10.1016/j.cemconcomp.2008.05.002
- M. Liska and A. Al-Tabbaa, "Performance of Magnesia Cements in Pressed Masonry Units with Natural Aggregates: Production Parameters Optimization," Constr. Build. Mater., 22 [8] 1789-97 (2008). https://doi.org/10.1016/j.conbuildmat.2007.05.007
- E. Soudee and J. Pera, "Influence of Magnesia Surface on the Setting Time of Magnesia-Phosphate Cement," Cem. Concr. Res., 32 [1] 153-57 (2002). https://doi.org/10.1016/S0008-8846(01)00647-0
- Q. Yang, B. Zhu, S. Zhang, and X. Wu, "Properties and Applications of Magnesia-Phosphate Cement Mortar for Rapid Repair of Concrete," Cem. Concr. Res., 30 [11] 180713 (2000).
- P. Frantzis and R. Baggott, "Rheological Characteristics of Retarded Magnesia Phosphate Cement," Cem. Concr. Res., 27 [8] 1155-66 (1997). https://doi.org/10.1016/S0008-8846(97)00126-9
- J.-K. Lee and J.-S. Soh, "Effect of Inorganic Admixture for Magnesia Cement Using MgO and Serpentine," Korean J. Mater. Res., 25 [2] 75-9 (2015). https://doi.org/10.3740/MRSK.2015.25.2.75
Cited by
- The use of magnesium-silicate rocks in building material production vol.451, pp.None, 2016, https://doi.org/10.1088/1757-899x/451/1/012042
- Technological aspects for the treatment of magnesium silicate waste vol.229, pp.None, 2016, https://doi.org/10.1088/1755-1315/229/1/012029
- Nephrite-Bearing Mining Waste As a Promising Mineral Additive in the Production of New Cement Types vol.10, pp.5, 2016, https://doi.org/10.3390/min10050394