DOI QR코드

DOI QR Code

Prediction of Relative Stability between TACE/Gelastatin and TACE/Gelastatin Hydroxamate

  • Nam, Ky-Youb (Research Institute Bioinformatics & Molecular Design (BMD), Yonsei Engineering Research Complex) ;
  • Han, Gyoon-Hee (Department of Biotechnology, Yonsei University) ;
  • Kim, Hwan-Mook (Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • No, Kyoung-Tai (Department of Biotechnology, Yonsei University)
  • Received : 2010.04.12
  • Accepted : 2010.09.15
  • Published : 2010.11.20

Abstract

A gelastatins (1), natural MMP inhibitors, and their hydroxamate analogues (2) in TACE enzyme evaluated for discovery of potent TACE inhibitors. We have employed molecular dynamics simulations to compute the relative free energy of hydration and binding to TACE for gelastatin (1) and its hydroxamate analogue (2). The relative free energy difference is directly described in this article using the free energy perturbation approach as a means to accurately predict the TACE inhibitor of gelastatin analogues. The results show that the good agreement between the experimental and theoretical relative free energies of binding, gelastatin hydroxamate (2) binds stronger to TACE by -3.37 kcal/mol. The desolvation energy costs significantly reduced binding affinity, hydroxamate group associated with high desolvation energy formed strong favorable interactions with TACE with more than compensated for the solvation costs and therefore led to an improvement in relative binding affinity.

Keywords

References

  1. Smolen, J. S.; Steiner, G. Nature Rev. Drug Discovery 2003, 2, 473-488. https://doi.org/10.1038/nrd1109
  2. Newton, R. C.; Decicco, C. P. J. Med. Chem. 1999, 42, 2295-2314. https://doi.org/10.1021/jm980541n
  3. Palladino, M. A.; Bahjat, F. R.; Theodorakis, E. A.; Moldawer, L. L. Nature Rev. Drug Discovery 2003, 2, 736-746. https://doi.org/10.1038/nrd1175
  4. Moreland, L. W.; Baumgartner, S. W.; Schiff, M. H.; Tindall, E. A.; Fleischmann, R. M.; Weaver, A. L. et al. N. Engl. J. Med. 1997, 337, 141-147. https://doi.org/10.1056/NEJM199707173370301
  5. Lipsky, P. E.; van der Heijde, D. M.; ST Clair, W. E.; Furst, D. E.; Breedveld, F. C.; Kalden, J. R. et al. N. Engl. J. Med. 2000, 343, 1594-1602. https://doi.org/10.1056/NEJM200011303432202
  6. Black, R. A.; Rauch, C. T.; Kozlosky, C. J.; Peschon, J. J.; Slack, J. L.; Wolfson, M. F. et al. Nature 1997, 385, 729-733. https://doi.org/10.1038/385729a0
  7. Moss, M. L.; Jin, S. C.; Milla, M. E.; Burkhart, W.; Carter, H. L.; Chen, W.-J. et al. Nature 1997, 385, 733-736. https://doi.org/10.1038/385733a0
  8. Beveridge, D. L.; DiCapua, F. M. Annu. Rev. Biophys. Biophys. Chem. 1989, 18, 431-492. https://doi.org/10.1146/annurev.bb.18.060189.002243
  9. McCammon, J. A. Curr. Opin. Struct. Biol. 1991, 1, 196-200. https://doi.org/10.1016/0959-440X(91)90061-W
  10. Rami, M. R.; Bacquet, R. J.; Zichi, D.; Matthews, D. A.; Welsh, K. M.; Jones, T. R. et al. J. Am. Chem. Soc. 1992, 114, 10117-10122. https://doi.org/10.1021/ja00052a005
  11. Gao, J.; Kuczera, K.; Tidor, B.; Karplus, M. Science 1989, 244, 1069-1072. https://doi.org/10.1126/science.2727695
  12. Reddy, M. R.; Erion, M. D.; Agarwal A. In Reviews in Computational Chemistry; Lipkowitz, K. B., Boyd, D. B., Eds.; Wiley-VCH: New York, USA, 2000; Vol. 16, pp 217-304.
  13. Reddy, M. R.; Viswanadhan, V. N.; Weinstein, J. N. Proc. Natl. Acad. Sci. USA 1991, 88, 10287-10291. https://doi.org/10.1073/pnas.88.22.10287
  14. Ferguson, D. M.; Radmer, R. J.; Kollman, P. A. J. Med. Chem. 1991, 34, 2654-2659. https://doi.org/10.1021/jm00112a048
  15. Tropsha, A. J.; Hermans, J. Protein Eng. 1992, 5, 29-33. https://doi.org/10.1093/protein/5.1.29
  16. Rao, B. G.; Tilton, R. F.; Singh, U. C. J. Am. Chem. Soc. 1992, 114, 4447-52. https://doi.org/10.1021/ja00038a001
  17. Erion, M. D.; Reddy, M. R. J. Am. Chem. Soc. 1998, 120, 3295-3304. https://doi.org/10.1021/ja972906j
  18. Merz, K. M.; Kollman, P. A. J. Am. Chem. Soc. 1989, 111, 5649-58. https://doi.org/10.1021/ja00197a022
  19. Reddy, M. R.; Varney, M. D.; Kalish, V.; Viswanadhan, V. N.; Appelt, K. J. Med. Chem. 1994, 37, 1145-52. https://doi.org/10.1021/jm00034a012
  20. Nam, K.-Y.; Chang, B. H.; Han, C. K.; Ahn, S. K.; No, K. T. Bull. Korean Chem. Soc. 2003, 24, 817-823. https://doi.org/10.5012/bkcs.2003.24.6.817
  21. Hu, X.; Balaz, S.; Shelver, W. H. J. of Mol. Graph. & Model. 2004, 22, 293-307. https://doi.org/10.1016/j.jmgm.2003.11.002
  22. Kim, H. M.; Choi, H.-M.; Tae, H. S.; Kim, B. G.; Lee, H.-Y.; Nam, K.-Y. et al. Biochem. & Biophys. Res. Commun. 2006, 341, 627-634. https://doi.org/10.1016/j.bbrc.2005.12.219
  23. Frisch, M. J. et al. GAUSSIAN 03, Revision B2; Gaussian Inc.: Pittsburgh, PA, 2003.
  24. Klamt, A.; Schüürmann, G. J. Chem. Soc., Perkin Trans. 1993, 2, 799-805
  25. Mezei, M. J. Chem. Phys. 1987, 86, 7084-7088. https://doi.org/10.1063/1.452357
  26. Hagler, A. T.; Lifson, S.; Dauber, P. J. Am. Chem. Soc. 1979, 101, 5111-5121. https://doi.org/10.1021/ja00512a001
  27. Maskos, K.; Fernandez-Catalan, C.; Huber, R.; Bourenkov, G. P.; Bartunik, H.; Ellestad, G. A. et al. Proc. Natl. Acad. Sci. USA 1998, 95, 3408-3412. https://doi.org/10.1073/pnas.95.7.3408
  28. Stote, R. H.; Karplus, M. Proteins: Strut., Funct. and Gent. 1995, 23, 12-31. https://doi.org/10.1002/prot.340230104
  29. No, K. T.; Kwon, O. Y.; Kim, S. Y.; Jhon, M. S.; Scheraga, A. H. J. Phys. Chem. 1995, 99, 3478. https://doi.org/10.1021/j100011a013
  30. van Gunsteren, W. F.; Mark, A. E. Eur. J. Biochem. 1992, 204, 947-961. https://doi.org/10.1111/j.1432-1033.1992.tb16716.x
  31. Beveridge, D. L.; DiCapua, F. M. Annu. Rev. Biophys. Biophys. Chem. 1989, 18, 431-492. https://doi.org/10.1146/annurev.bb.18.060189.002243
  32. Essex, J. W.; Severance, D. L.; Tirado-Rives, J.; Jorgensen, W. L. J. Phys. Chem. B 1997, 101, 9663-9669. https://doi.org/10.1021/jp971990m