Sarcoidosis is a multisystem disease characterized by noncaseating granulomas. Cardiac involvement is known to have poor prognosis because it can manifest as a serious condition such as the conduction abnormality, heart failure, ventricular arrhythmia, or sudden cardiac death. Although early diagnosis and early treatment is critical to improve patient prognosis, the diagnosis of CS is challenging in most cases. Diagnosis usually relies on endomyocardial biopsy (EMB), but its diagnostic yield is low due to the incidence of patchy myocardial involvement. Guidelines for the diagnosis of CS recommend a combination of clinical, electrocardiographic, and imaging findings from various modalities, if EMB cannot confirm the diagnosis. Especially, the role of advanced imaging such as cardiac magnetic resonance (CMR) imaging and positron emission tomography (PET), has shown to be important not only for the diagnosis, but also for monitoring treatment response and prognostication. CMR can evaluate cardiac function and fibrotic scar with good specificity. Late gadolinium enhancement (LGE) in CMR shows a distinctive enhancement pattern for each disease, which may be useful for differential diagnosis of CS from other similar diseases. Effectively, T1 or T2 mapping techniques can be also used for early recognition of CS. In the meantime, PET can detect and quantify metabolic activity and can be used to monitor treatment response. Recently, the use of a hybrid CMR-PET has introduced to allow identify patients with active CS with excellent co-localization and better diagnostic accuracy than CMR or PET alone. However, CS may show various findings with a wide spectrum, therefore, radiologists should consider the possible differential diagnosis of CS including myocarditis, dilated cardiomyopathy (DCM), hypertrophic cardiomyopathy, amyloidosis, and arrhythmogenic right ventricular cardiomyopathy. Radiologists should recognize the differences in various diseases that show the characteristics of mimicking CS, and try to get an accurate diagnosis of CS.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.12
no.12
/
pp.5723-5743
/
2018
The evolving internet-based services demand high-speed data transmission in conjunction with scalability. The next generation optical network has to exploit artificial intelligence and cognitive techniques to cope with the emerging requirements. This work proposes a novel way to solve the dynamic provisioning problem in optical network. The provisioning in optical network involves the computation of routes and the reservation of wavelenghs (Routing and Wavelength assignment-RWA). This is an extensively studied multi-objective optimization problem and its complexity is known to be NP-Complete. As the exact algorithms incurs more running time, the heuristic based approaches have been widely preferred to solve this problem. Recently the software-defined networking has impacted the way the optical pipes are configured and monitored. This work proposes the dynamic selection of path computation algorithms in response to the changing service requirements and network scenarios. A software-defined controller mechanism with a novel packet matching feature was proposed to dynamically match the traffic demands with the appropriate algorithm. A software-defined controller with Path Computation Element-PCE was created in the ONOS tool. A simulation study was performed with the case study of dynamic path establishment in ONOS-Open Network Operating System based software defined controller environment. A java based NOX controller was configured with a parent path computation element. The child path computation elements were configured with different path computation algorithms under the control of the parent path computation element. The use case of dynamic bulk path creation was considered. The algorithm selection method is compared with the existing single algorithm based method and the results are analyzed.
Early detection of small concrete crack or reinforcement corrosion is necessary for Structural Health Monitoring (SHM). Global vibration based methods are advantageous over local methods because of simple equipment installation and cost efficiency. Among vibration based techniques, FRF based methods are preferred over modal based methods. In this study, a new coupled method using frequency response function (FRF) and proper orthogonal modes (POM) is proposed by using the dynamic characteristic of a damaged beam. For the numerical simulation, wave finite element (WFE), coupled with traditional finite element (FE) method is used for effectively incorporating the damage related information and faster computation. As reported in literature, hybrid combination of wave function based wave finite element method and shape function based finite element method can addresses the mid frequency modelling difficulty as it utilises the advantages of both the methods. It also reduces the dynamic matrix dimension. The algorithms are implemented on a three-dimensional reinforced concrete beam. Damage is modelled and studied for two scenarios, i.e., crack in concrete and rebar corrosion. Single and multiple damage locations with different damage length are also considered. The proposed methodology is found to be very sensitive to both single- and multiple- damage while being computationally efficient at the same time. It is observed that the detection of damage due to corrosion is more challenging than that of concrete crack. The similarity index obtained from the damage parameters shows that it can be a very effective indicator for appropriately indicating initiation of damage in concrete structure in the form of spread corrosion or invisible crack.
Kim, Se Hyun;Park, Keun Hyeong;Lee, Eun Been;Yu, Geun Taek;Lee, Dong Hyun;Yang, Kun;Park, Ju Yong;Park, Min Hyuk
Journal of Surface Science and Engineering
/
v.53
no.6
/
pp.330-342
/
2020
Since the original report on ferroelectricity in Si-doped HfO2 in 2011, fluorite-structured ferroelectrics have attracted increasing interest due to their scalability, established deposition techniques including atomic layer deposition, and compatibility with the complementary-metal-oxide-semiconductor technology. Especially, the emerging fluorite-structured ferroelectrics are considered promising for the next-generation semiconductor devices such as storage class memories, memory-logic hybrid devices, and neuromorphic computing devices. For achieving the practical semiconductor devices, understanding polarization switching kinetics in fluorite-structured ferroelectrics is an urgent task. To understand the polarization switching kinetics and domain dynamics in this emerging ferroelectric materials, various classical models such as Kolmogorov-Avrami-Ishibashi model, nucleation limited switching model, inhomogeneous field mechanism model, and Du-Chen model have been applied to the fluorite-structured ferroelectrics. However, the polarization switching kinetics of fluorite-structured ferroelectrics are reported to be strongly affected by various nonideal factors such as nanoscale polymorphism, strong effect of defects such as oxygen vacancies and residual impurities, and polycrystallinity with a weak texture. Moreover, some important parameters for polarization switching kinetics and domain dynamics including activation field, domain wall velocity, and switching time distribution have been reported quantitatively different from conventional ferroelectrics such as perovskite-structured ferroelectrics. In this focused review, therefore, the polarization switching kinetics of fluorite-structured ferroelectrics are comprehensively reviewed based on the available literature.
In this paper, we present a deep neural network-based prediction model that processes and analyzes the corporate credit and personal credit information of individual business owners as a new method to predict the default rate of individual business more accurately. In modeling research in various fields, feature selection techniques have been actively studied as a method for improving performance, especially in predictive models including many features. In this paper, after statistical verification of macroeconomic indicators (macro variables) and credit information (micro variables), which are input variables used in the default rate prediction model, additionally, through the credit information feature selection method, the final feature set that improves prediction performance was identified. The proposed credit information feature selection method as an iterative & hybrid method that combines the filter-based and wrapper-based method builds submodels, constructs subsets by extracting important variables of the maximum performance submodels, and determines the final feature set through prediction performance analysis of the subset and the subset combined set.
The Journal of Korea Institute of Information, Electronics, and Communication Technology
/
v.15
no.3
/
pp.211-216
/
2022
Steganography technology protects the existence of hidden information by embedding a secret message in a specific location on the cover medium. Security and resistance are strengthened by applying various hybrid methods based on encryption and steganography. In particular, techniques to increase chaos and randomness are needed to improve security. In fact, the case where the shuffling method is applied based on the discrete cosine transform(DCT) and the least significant bit(LSB) is an area that needs to be studied. I propose a new approach to hide the bit information of Hangul messages by integrating the selective shuffling method that can add the complexity of message hiding and applying the spatial domain technique to steganography. Inverse shuffling is applied when extracting messages. In this paper, the Hangul message to be inserted is decomposed into the choseong, jungseong and jongseong. It improves security and chaos by applying a selective shuffling process based on the corresponding information. The correlation coefficient and PSNR were used to confirm the performance of the proposed method. It was confirmed that the PSNR value of the proposed method was appropriate when compared with the reference value.
KIPS Transactions on Software and Data Engineering
/
v.10
no.11
/
pp.501-512
/
2021
Recently, a breakthrough has been made in the NLP area by Transformer techniques based on encoder-decoder. However, this only can be used in mainstream languages where millions of dataset are well-equipped, such as English and Chinese, and there is a limitation that it cannot be used in non-mainstream languages where dataset are not established. In addition, there is a deflection problem that focuses on the beginning of the document in mechanical summarization. Therefore, these methods are not suitable for documents with flows such as fairy tales and novels. In this paper, we propose a hybrid summarization method that does not require a dataset and improves the deflection problem using GAN with two adaptive discriminators. We evaluate our model on the CNN/Daily Mail dataset to verify an objective validity. Also, we proved that the model has valid performance in Korean, one of the non-mainstream languages.
Rini, Widyaningrum;Ika, Candradewi;Nur Rahman Ahmad Seno, Aji;Rona, Aulianisa
Imaging Science in Dentistry
/
v.52
no.4
/
pp.383-391
/
2022
Purpose: Periodontitis, the most prevalent chronic inflammatory condition affecting teeth-supporting tissues, is diagnosed and classified through clinical and radiographic examinations. The staging of periodontitis using panoramic radiographs provides information for designing computer-assisted diagnostic systems. Performing image segmentation in periodontitis is required for image processing in diagnostic applications. This study evaluated image segmentation for periodontitis staging based on deep learning approaches. Materials and Methods: Multi-Label U-Net and Mask R-CNN models were compared for image segmentation to detect periodontitis using 100 digital panoramic radiographs. Normal conditions and 4 stages of periodontitis were annotated on these panoramic radiographs. A total of 1100 original and augmented images were then randomly divided into a training (75%) dataset to produce segmentation models and a testing (25%) dataset to determine the evaluation metrics of the segmentation models. Results: The performance of the segmentation models against the radiographic diagnosis of periodontitis conducted by a dentist was described by evaluation metrics(i.e., dice coefficient and intersection-over-union [IoU] score). MultiLabel U-Net achieved a dice coefficient of 0.96 and an IoU score of 0.97. Meanwhile, Mask R-CNN attained a dice coefficient of 0.87 and an IoU score of 0.74. U-Net showed the characteristic of semantic segmentation, and Mask R-CNN performed instance segmentation with accuracy, precision, recall, and F1-score values of 95%, 85.6%, 88.2%, and 86.6%, respectively. Conclusion: Multi-Label U-Net produced superior image segmentation to that of Mask R-CNN. The authors recommend integrating it with other techniques to develop hybrid models for automatic periodontitis detection.
In this study, a new recentering friction device (RFD) to retrofit steel moment frame structures is introduced. The device provides both self-centering and energy dissipation capabilities for the retrofitted structure. A hybrid performance-based seismic design procedure considering multiple limit states is proposed for designing the device and the retrofitted structure. The design of the RFD is achieved by modifying the conventional performance-based seismic design (PBSD) procedure using computational intelligence techniques, namely, genetic algorithm (GA) and artificial neural network (ANN). Numerous nonlinear time-history response analyses (NLTHAs) are conducted on multi-degree of freedom (MDOF) and single-degree of freedom (SDOF) systems to train and validate the ANN to achieve high prediction accuracy. The proposed procedure and the new RFD are assessed using 2D and 3D models globally and locally. Globally, the effectiveness of the proposed device is assessed by conducting NLTHAs to check the maximum inter-story drift ratio (MIDR). Seismic fragilities of the retrofitted models are investigated by constructing fragility curves of the models for different limit states. After that, seismic life cycle cost (LCC) is estimated for the models with and without the retrofit. Locally, the stress concentration at the contact point of the RFD and the existing steel frame is checked being within acceptable limits using finite element modeling (FEM). The RFD showed its effectiveness in minimizing MIDR and eliminating residual drift for low to mid-rise steel frames models tested. GA and ANN proved to be crucial integrated parts in the modified PBSD to achieve the required seismic performance at different limit states with reasonable computational cost. ANN showed a very high prediction accuracy for transformation between MDOF and SDOF systems. Also, the proposed retrofit showed its efficiency in enhancing the seismic fragility and reducing the LCC significantly compared to the un-retrofitted models.
Seismic isolation and vibration control techniques have been developed and put into practical use by challenging researchers and engineers worldwide since the latter half of the 20th century, and after more than 40 years, they are now used in thousands of buildings, private residences, highways in many seismic areas in the world. Seismic isolation and vibration control structures can keep the structures undamaged even in a major earthquake and realize continuous occupancy. This performance has come to be recognized not only by engineers but also by ordinary people, becoming indispensable for the formation of a resilient society. However, the dynamic characteristics of seismically isolated bearings, the key elements, are highly dependent on the size effect and rate-of-loading, especially under extreme loading conditions. Therefore, confirming the actual properties and performance of these bearings with full-scale specimens under prescribed dynamic loading protocols is essential. The number of testing facilities with such capacity is still limited and even though the existing labs in the US, China, Taiwan, Italy, etc. are conducting these tests, their dynamic loading test setups are subjected to friction generated by the large vertical loads and inertial force of the heavy table which affect the accuracy of measured forces. To solve this problem, the authors have proposed a direct reaction force measuring system that can eliminate the effects of friction and inertia forces, and a seismic isolation testing facility with the proposed system (E-isolation) will be completed on March 2023 in Japan. This test facility is designed to conduct not only dynamic loading tests of seismic isolation bearings and dampers but also to perform hybrid simulations of seismically isolated structures. In this paper, design details and the realization of this system into an actual dynamic testing facility are presented and the outcomes are discussed.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.