• Title/Summary/Keyword: hybrid techniques

Search Result 746, Processing Time 0.027 seconds

A Study on Al Hot Forming Using Air Bulging (Air Bulging을 이용한 열간 알루미늄 성형에 관한 연구)

  • Park, D.H.;Kim, T.J.
    • Transactions of Materials Processing
    • /
    • v.24 no.1
    • /
    • pp.20-27
    • /
    • 2015
  • Hot tensile tests were conducted at different temperatures ranging from $20^{\circ}C$ to $550^{\circ}C$ to evaluate the mechanical properties of Al5052 seamless tubes. Such tubes can provide the technological foundation for complex forming using hot air bulging. Hot air bulging is one of the recently developed hydroforming techniques and it has some limitations in terms of cycle times. The benefits of hot air bulging are weight and cost savings through part consolidation and reduced post-forming processes such as welding and piercing. In order to extend the forming limits of Al lightweight material hot air bulging was investigated. A heated tube was placed in a heated die and sealed at the ends by sealing cylinders. The heated tube was subsequently expanded against the die cavity wall by internal pressure using air medium. The results of the current study show that axial feeding speed and air pressure have an effect on the formability of Al tubes during air bulging at elevated temperatures.

Recent Study of Technical Development for High Efficient Brazing (최신의 고능률 브레이징 기술개발 동향)

  • Yoo, Ho-Cheon
    • Journal of Welding and Joining
    • /
    • v.34 no.2
    • /
    • pp.36-45
    • /
    • 2016
  • Recent developing tendency for technologies of high efficient brazing are studied by searching of NDSL, Science Direct, KIPRIS, PCT and so on. Active metal brazing, arc brazing, fluxless brazing, brazing with low melting point, reactive air brazing, laser brazing, laser droplet brazing are investigated. By optimal selecting of the above mentioned technologies, it needs to investigate an economical metallurgical design and the advanced brazing methods. To improve the embrittlement of intermetallic compound at brazing interface, it must be studied the inexpensive variant metals including nonmetals and the heat sources(MIG, TIG, Laser) by hybrid techniques.

Variational Data Assimilation for Optimal Initial Conditions in Air Quality Modeling

  • Park, Seon-Ki
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.E2
    • /
    • pp.75-81
    • /
    • 2003
  • Variational data assimilation, which is recently introduced to the air quality modeling, is a promising tool for obtaining optimal estimates of initial conditions and other important parameters such as emission and deposition rates. In this paper. two advanced techniques for variational data assimilation, based on the adjoint and quasi-inverse methods, are tested for a simple air quality problem. The four-dimensional variational assimilation (4D-Var) requires to run an adjoint model to provide the gradient information in an iterative minimization process, whereas the inverse 3D-Var (I3D-Var) seeks for optimal initial conditions directly by running a quasi -inverse model. For a process with small dissipation, I3D-Vu outperforms 4D-Var in both computing time and accuracy. Hybrid application which combines I3D-Var and standard 4D-Var is also suggested for efficient data assimilation in air quality problems.

Design and Implementation of OCQPSK/HPSK Modem using Digital Signal Processors for Software Defined Radio Applications

  • Cho, Pyung-Dong;Kang, Byeong-Gwon
    • Proceedings of the IEEK Conference
    • /
    • 2002.07c
    • /
    • pp.1428-1431
    • /
    • 2002
  • It is general opinion that the future mobile multimedia networks will use different standards and a prospective solution to this problem will be software defined radio (SDR) techniques. SDR provides the flexibility to support multiple air interfaces and signal processing functions at the same time. Especially, digital signal processors and FPGAs are widely used for implementation of these adaptive and flexible functions of a baseband modem for SDR applications. Also, it is known that the modulation schemes of OCQPSK (Orthogonal Complex QPSK) and HPSK (Hybrid PSK) are used for IMT-2000 services of cdma2000 and WCDMA, respectively. Thus, in this paper, we design and implement an OCQPSK / HPSK modem using a DSP chip of Texas Instrument's TMS320C6701. One modulation scheme is operated by adaptive selection between the two schemes and 5 physical traffic channels differentiated by orthogonal codes are implemented in one DSP chip and each channel has 1Mbps data rates and 8Mcps chip rates.

  • PDF

Reconfigurable Multidisciplinary Design Optimization Framework (재구성이 가능한 다분야통합최적설계 프레임웍의 개발)

  • Lee, Jang-Hyo;Lee, Se-Jung
    • Korean Journal of Computational Design and Engineering
    • /
    • v.14 no.3
    • /
    • pp.207-216
    • /
    • 2009
  • Modern engineering design problems involve complexity of disciplinary coupling and difficulty of problem formulation. Multidisciplinary design optimization can overcome the complexity and design optimization software or frameworks can lessen the difficulty. Recently, a growing number of new multidisciplinary design optimization techniques have been proposed. However, each technique has its own pros and cons and it is hard to predict a priori which technique is more efficient than others for a specific problem. In this study, a software system has been developed to directly solve MDO problems with minimal input required. Since the system is based on MATLAB, it can exploit the optimization toolbox which is already developed and proven to be effective and robust. The framework is devised to change an MDO technique to another as the optimization goes on and it is called a reconfigurable MDO framework. Several numerical examples are shown to prove the validity of the reconfiguration idea and its effectiveness.

INTRODUCTION OF SPARK EROSION

  • Jeong, Chang-Mo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.38 no.4
    • /
    • pp.402-411
    • /
    • 2000
  • The dental profession is currently experiencing a technology explosion. Processes are being replaced by modern, inexpensive, and precise techniques that can be used to solve complex restorative problems. Electrical discharge machining(EDM, known as spark erosion in Europe) is a nonconventional, industrial technique that has application in dentistry. EDM may be defined as a metal removal process using a series of sparks to erode material from a workpiece in a liquid medium under carefully controlled conditions. EDM is recently adopted in the dental laboratory to fabricate precision attachments, hybrid tele-scope crowns, Ti-ceramic crowns. EDM has also been used to achieve a passive precision metal-to-metal fit between the substructure bar and the removable superstructure and to correct the fit of implant retained restorations. In this article, a brief history and explanation of EDM is discussed and a description of the use of this process for fabricating attachments and crowns or for correcting the fit of cast restorations is presented.

  • PDF

Hybrid Fuzzy Adaptive Wiener Filtering with Optimization for Intrusion Detection

  • Sujendran, Revathi;Arunachalam, Malathi
    • ETRI Journal
    • /
    • v.37 no.3
    • /
    • pp.502-511
    • /
    • 2015
  • Intrusion detection plays a key role in detecting attacks over networks, and due to the increasing usage of Internet services, several security threats arise. Though an intrusion detection system (IDS) detects attacks efficiently, it also generates a large number of false alerts, which makes it difficult for a system administrator to identify attacks. This paper proposes automatic fuzzy rule generation combined with a Wiener filter to identify attacks. Further, to optimize the results, simplified swarm optimization is used. After training a large dataset, various fuzzy rules are generated automatically for testing, and a Wiener filter is used to filter out attacks that act as noisy data, which improves the accuracy of the detection. By combining automatic fuzzy rule generation with a Wiener filter, an IDS can handle intrusion detection more efficiently. Experimental results, which are based on collected live network data, are discussed and show that the proposed method provides a competitively high detection rate and a reduced false alarm rate in comparison with other existing machine learning techniques.

5G Network Communication, Caching, and Computing Algorithms Based on the Two-Tier Game Model

  • Kim, Sungwook
    • ETRI Journal
    • /
    • v.40 no.1
    • /
    • pp.61-71
    • /
    • 2018
  • In this study, we developed hybrid control algorithms in smart base stations (SBSs) along with devised communication, caching, and computing techniques. In the proposed scheme, SBSs are equipped with computing power and data storage to collectively offload the computation from mobile user equipment and to cache the data from clouds. To combine in a refined manner the communication, caching, and computing algorithms, game theory is adopted to characterize competitive and cooperative interactions. The main contribution of our proposed scheme is to illuminate the ultimate synergy behind a fully integrated approach, while providing excellent adaptability and flexibility to satisfy the different performance requirements. Simulation results demonstrate that the proposed approach can outperform existing schemes by approximately 5% to 15% in terms of bandwidth utilization, access delay, and system throughput.

Angular-Spatial Multiplexed Volume Holographic Memory System (각.공간 복합 다중화 체적 홀로그래픽 메모리 시스템)

  • 강훈종;이승현;한종욱;김은수
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.12
    • /
    • pp.75-82
    • /
    • 1998
  • Many multiplexing techniques are proposed for high storage densities in a volume hologram. In this paper, we present a hybrid angularly and spatially multiplexed volume holographic memory system. Multiple holograms are recorded by using reference and object waves with different incident angles and positions that are changed by step motors. A hologram is written by exposing the crystal with recording time schedule to the interference pattern of the object beam and a reference plane wave. Finally, we show experimental results of the storage of three layers of 300 multiplexed holograms in a LiNbO$_3$ : Fe crystal.

  • PDF

Approaches of the Computaional Mechanics on the Stress Wave Analysis (응력파동해석에 대한 전산역학적 접근방법)

  • 조윤호;정현규;김승호
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.04a
    • /
    • pp.415-429
    • /
    • 2002
  • Various modeling techniques for ultrasonic wave propagation and scattering problems in finite solid media are presented. Elastodynamic boundary value problems in inhomogeneous multi-layered plate-like structures are set up for modal analysis of guided wave propagation and numerically solved to obtain dispersion curves which show propagation characteristics of guided waves. As a powerful modeling tool to overcome such numerical difficulties in wave scattering problems as the geometrical complexity and mode conversion, the Boundary Element Method(BEM) is introduced and is combined with the normal mode expansion technique to develop the hybrid BEM, an efficient technique for modeling multi-mode conversion of guided wave scattering problems.

  • PDF