Variational Data Assimilation for Optimal Initial Conditions in Air Quality Modeling

  • Park, Seon-Ki (Department of Environmental Science and Engineering Ewha Womans University)
  • Published : 2003.06.01

Abstract

Variational data assimilation, which is recently introduced to the air quality modeling, is a promising tool for obtaining optimal estimates of initial conditions and other important parameters such as emission and deposition rates. In this paper. two advanced techniques for variational data assimilation, based on the adjoint and quasi-inverse methods, are tested for a simple air quality problem. The four-dimensional variational assimilation (4D-Var) requires to run an adjoint model to provide the gradient information in an iterative minimization process, whereas the inverse 3D-Var (I3D-Var) seeks for optimal initial conditions directly by running a quasi -inverse model. For a process with small dissipation, I3D-Vu outperforms 4D-Var in both computing time and accuracy. Hybrid application which combines I3D-Var and standard 4D-Var is also suggested for efficient data assimilation in air quality problems.

Keywords

References

  1. Anderson, D.A., J.C. Tannehill, and R.H. Pletcher (1984) Computational Fluid Mechanics and Heat Transfer, Hemisphere Publishing Corporation, 599 pp
  2. Austin, J. (1992) Toward four-dimensional assimilation of stratospheric chemical constituents, J. Geophys. Res., 97, 2569-2588
  3. Ayotte, K.W. (1997) Optimization of upstream profiles in modelled flow over complex terrain, Bound.- Layer Meteor., 83, 285-309
  4. Bergamaschi, P., R. Hein, M. Heimann, and P.J. Crutzen (2000)Inverse modeling of the global CO cycle, I, Inversion of CO mixing ratios, J. Geophys, Res., 105(D2),1909-1927
  5. Collins, W.D., P.J. Rasch, B.E. Eaton, B.Y. Khattatov, and J.-F. Lamarque(2001) Simulating aerosols using a chemical transport model with assimilation of satellite aerosol retrievals: Methodology for IN-DOEX, J. Geophys. Res., 106(D7), 7313- 7336
  6. Elbem, H. and H. Schmidt(1999) A four-dimensional variational chemistry data assimilation schemefor Eul-erian chemistry transport modeling, J. Geophys Res., 104(DI5), 18583-18598
  7. Elbern, H., H. Schmidt, and A. Ebel (1997) Variational data assimilation for tropospheric chemistry modeling, J. Geophys. Res., 102, 15967-15985
  8. Elbern, H., H. Schmidt, and A. Ebel (2000a) Improving chemical state analysis and ozone forecasts by four-dimensional chemistry data assimilation, Proceed-ings, 3rd Int. Symp. Assimilation of Observations in Meteorology and Oceanography, Quebec, Canada, 1999, WMO/TD-No. 986, WMO, 293-296
  9. Elbern, H., H. Schmidt, and A. Ebel (2000b) 4D-variational data assimilation with an adjoint air quality model for emission analysis, Environ. Modell. Software, 15,539-548
  10. Enting, I. (2000) Green's function methods of tracer inversion, in Inverse Methods in Global Biogeochemical Cycles. Edited by P. Kasibhatla, M. Heimann, P. Rayner, N. Mahowald, R.G. Prinn, and D.E. Hartley, AGU, Washington, D.C., 19-31
  11. Fisher, M. and D.J. Larry (1995) Lagrangian four-dimen-sional variational data assimilation of chemical species. Quart. J. Roy. Meteor. Soc., 121, 1681-1704
  12. Friedman, B. (1956) Principles and Techniques of Applied Mathematics, John Wiley & Sons, Inc., 315 pp
  13. Ghil, M. and P. Malanotte-Rizzoli (1991) Data assimilation in meteorology and oceanography. Adv. Geophys., 33: 141-266
  14. Gill, P.E., W. Murray, and M.H. Wright (1981) Practical Optimization. Academic Press, 401 pp
  15. Hartley, D.E. and R.G. Prinn (1993) Feasibility of determin-ing surface emissions of trace gases using an in-verse method in a three-dimensional chemical transport model, J. Geophys. Res., 98, 5183-5197
  16. Kalnay, E., S.K. Park, Z. - X. Pu, and J. Gao (2000) Applica-tion of the quasi -inverse method to data assimila-tion, Mon. Wea. Rev., 128,864-875
  17. Leslie, L.M., M.S. Speer, L. Qi, E. Kalnay, S.K. Park, and Z. - X. Pu (2000) A comparison of data assimilation methods for hurricane track prediction, Preprints, 24th Conf. on Hurricanes and Tropical Meteoro-logy, Ft. Lauderdale, FL, Amer. Meteor. Soc., 128
  18. Liu, D.C. and J. Nocedal (1989) On the limited memory BFGS method for large scale optimization, Math. Prog., 45, 503-528
  19. Park, S.K. and K.K. Droegemeier (1997) Validity of the tangent linear approximation in a moist convective cloud model, Mon. Wea. Rev., 125, 3320-3340
  20. Park, S.K. and D. Zupanski (2003) Four-dimensional variational data assimilation for mesoscale and storm-scale applications, Meteor. Atm. Phys., 82, 173-208
  21. Pudykiewicz, J.A. (1998) Application of adjoint tracer transport equations for evaluating source parameters, Atmos. Environ., 32, 3039-3050
  22. Sasaki, Y. (1958) An objective analysis based on the varia-tional methods, J. Meteor. Soc. Japan, 36, 77-88
  23. Seinfeld, J.H. (1988) Ozone air quality models: A critical review, J. Air Pollut. Control Assoc., 38, 616-645
  24. Talagrand, O. (1997) Assimilation of observations, an intro-duction, J. Meteor. Soc. Japan, 75(IB), 191-209
  25. Tarantola, A. (1987) Inverse Problem Theory, Elsevier Sci-ence,613 pp
  26. van Loon, M., PJ.H. Builtjes, and A.J. Segers (2000) Data assimilation of ozone in the atmospheric transport chemistry model LOTUS, Environ. Modell. Soft-ware, 15,603-609
  27. Waelbroeck, C. and J.-F. Louis (1995) Sensitivity analysis of a model of CO2 exchange in tundra ecosystems by the adjoint method, J. Geophys. Res., 100, 2801-2816
  28. Zhang, X.F., A.W. Heemink, J.M. Janssen, P.H.M. Janssen, and FJ. Sauter (1999) A computationally efficient Kalman smoother for the evaluation of the ${CH_4}$ budget in Europe, Appl. Math. Modell., 23, 109-129