• Title/Summary/Keyword: hybrid reliability

Search Result 412, Processing Time 0.034 seconds

Hybrid Energy Storage System with Emergency Power Function of Standardization Technology (비상전원 기능을 갖는 하이브리드 에너지저장시스템 표준화 기술)

  • Hong, Kyungjin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.2
    • /
    • pp.187-192
    • /
    • 2019
  • Hybrid power storage system with emergency power function for demand management and power outage minimizes the investment cost in the building of buildings and factories requiring emergency power generation facilities, We propose a new business model by developing technology that can secure economical efficiency by reducing power cost at all times. Normally, system power is supplied to load through STS (Static Transfer Switch), and PCS is connected to system in parallel to perform demand management. In order to efficiently operate the electric power through demand forecasting, the EMS issues a charge / discharge command to the ESS as a PMS (Power Management System), and the PMS transmits the command to the PCS controller to operate the system. During the power outage, the STS is rapidly disengaged from the system, and the PCS becomes an independent power supply and can supply constant voltage / constant frequency power to the load side. Therefore, it is possible to secure reliability through verification of actual system linkage and independent operation performance of hybrid ESS, By enabling low-carbon green growth technology to operate in conjunction with an efficient grid, it is possible to improve irregular power quality and contribute to peak load by generating renewable energy through ESS linkage. In addition, the ESS is replacing the frequency follow-up reserve, which is currently under the charge of coal-fired power generation, and thus it is anticipated that the operation cost of the LNG generator with high fuel cost can be reduced.

A Hybrid Blockchain-Based E-Voting System with BaaS (BaaS를 이용한 하이브리드 블록체인 기반 전자투표 시스템)

  • Kang Myung Joe;Kim Mi Hui
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.12 no.8
    • /
    • pp.253-262
    • /
    • 2023
  • E-voting is a concept that includes actions such as kiosk voting at a designated place and internet voting at an unspecified place, and has emerged to alleviate the problem of consuming a lot of resources and costs when conducting offline voting. Using E-voting has many advantages over existing voting systems, such as increased efficiency in voting and ballot counting, reduced costs, increased voting rate, and reduced errors. However, centralized E-voting has not received attention in public elections and voting on corporate agendas because the results of voting cannot be trusted due to concerns about data forgery and modulation and hacking by others. In order to solve this problem, recently, by designing an E-voting system using blockchain, research has been actively conducted to supplement concepts lacking in existing E-voting, such as increasing the reliability of voting information and securing transparency. In this paper, we proposed an electronic voting system that introduced hybrid blockchain that uses public and private blockchains in convergence. A hybrid blockchain can solve the problem of slow transaction processing speed, expensive fee by using a private blockchain, and can supplement for the lack of transparency and data integrity of transactions through a public blockchain. In addition, the proposed system is implemented as BaaS to ensure the ease of type conversion and scalability of blockchain and to provide powerful computing power. BaaS is an abbreviation of Blockchain as a Service, which is one of the cloud computing technologies and means a service that provides a blockchain platform ans software through the internet. In this paper, in order to evaluate the feasibility, the proposed system and domestic and foreign electronic voting-related studies are compared and analyzed in terms of blockchain type, anonymity, verification process, smart contract, performance, and scalability.

A Review on the Bonding Characteristics of SiCN for Low-temperature Cu Hybrid Bonding (저온 Cu 하이브리드 본딩을 위한 SiCN의 본딩 특성 리뷰)

  • Yeonju Kim;Sang Woo Park;Min Seong Jung;Ji Hun Kim;Jong Kyung Park
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.4
    • /
    • pp.8-16
    • /
    • 2023
  • The importance of next-generation packaging technologies is being emphasized as a solution as the miniaturization of devices reaches its limits. To address the bottleneck issue, there is an increasing need for 2.5D and 3D interconnect pitches. This aims to minimize signal delays while meeting requirements such as small size, low power consumption, and a high number of I/Os. Hybrid bonding technology is gaining attention as an alternative to conventional solder bumps due to their limitations such as miniaturization constraints and reliability issues in high-temperature processes. Recently, there has been active research conducted on SiCN to address and enhance the limitations of the Cu/SiO2 structure. This paper introduces the advantages of Cu/SiCN over the Cu/SiO2 structure, taking into account various deposition conditions including precursor, deposition temperature, and substrate temperature. Additionally, it provides insights into the core mechanisms of SiCN, such as the role of Dangling bonds and OH groups, and the effects of plasma surface treatment, which explain the differences from SiO2. Through this discussion, we aim to ultimately present the achievable advantages of applying the Cu/SiCN hybrid bonding structure.

The Experimental Study of Full-scale Optimized Composite Beam (OCB) Reinforced with Open Strands (노출강연선으로 보강된 하이브리드 건축용 OCB보의 실물모형 재하실험연구)

  • Lee, Doo-Sung;Kim, Tae-Kyun;Chae, Gyu-Bong
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.5
    • /
    • pp.471-480
    • /
    • 2015
  • The building structure is planned to maximize the use of space in recent. It was developed of a hybrid OCB (Optimized Composite Beam) for trying to take advantage of the maximize space. The OCB is composed of the steel h-beam section reinforced by open strands in negative moment zone and the psc concrete section in positive zone. Flexural behaviors of typical architectural bybrid OCB section was investigated. The 15 m OCB specimen was tested under three point static loading system. Following results are obtained from the tests; 1) The OCB with 15 m span develop initial flexural crackings under the 171% of full service loading. 2) Overall deflections of OCB under the service loads are less than those of the allowable limit in KCI Code provision. 3) The crack patterns, failure mode and ultimate load capacity of test specimen and F.E. model in this paper and they are compared to each other. The OCB is verified of structural reliability from the experimental results.

Development of the Integrated Power Converter for the Environmentally Friendly Vehicle and Validation of the LDC using Battery HILS (친환경 자동차용 통합형 전력변환장치의 개발 및 배터리 HILS를 이용한 LDC 검증에 관한 연구)

  • Kim, Tae-Hoon;Song, Hyun-Sik;Lee, Baek-Haeng;Lee, Chan-Song;Kwon, Cheol-Soon;Jung, Do-Yang
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.9
    • /
    • pp.1212-1218
    • /
    • 2014
  • For OBC (On-Board Charger) and LDC (Low DC-DC Converter) used as essential power conversion systems of PHEV (Plug-in Hybrid Electric Vehicle), system performance is required as well as reliability, which is need to protect the vehicle and driver from various faults. While current development processor is sufficient for embodying functions and verifying performance in normal state during development of prototypes for OBC and LDC, there is no clear method of verification for various fault situations that occur in abnormal state and for securing stability of vehicle base, unless verification is performed by mounting on an actual vehicle. In this paper, a CCM (Charger Converter Module) was developed as an integrated structure of OBC and LDC. In addition, diverse fault situations that can occur in vehicles are simulated by a simulator to artificially inject into power conversion system and to test whether it operates properly. Also, HILS (Hardware-in-the-Loop Simulation) is carried out to verify whether LDC is operated properly under power environment of an actual vehicle.

Counter-Based Approaches for Efficient WCET Analysis of Multicore Processors with Shared Caches

  • Ding, Yiqiang;Zhang, Wei
    • Journal of Computing Science and Engineering
    • /
    • v.7 no.4
    • /
    • pp.285-299
    • /
    • 2013
  • To enable hard real-time systems to take advantage of multicore processors, it is crucial to obtain the worst-case execution time (WCET) for programs running on multicore processors. However, this is challenging and complicated due to the inter-thread interferences from the shared resources in a multicore processor. Recent research used the combined cache conflict graph (CCCG) to model and compute the worst-case inter-thread interferences on a shared L2 cache in a multicore processor, which is called the CCCG-based approach in this paper. Although it can compute the WCET safely and accurately, its computational complexity is exponential and prohibitive for a large number of cores. In this paper, we propose three counter-based approaches to significantly reduce the complexity of the multicore WCET analysis, while achieving absolute safety with tightness close to the CCCG-based approach. The basic counter-based approach simply counts the worst-case number of cache line blocks mapped to a cache set of a shared L2 cache from all the concurrent threads, and compares it with the associativity of the cache set to compute the worst-case cache behavior. The enhanced counter-based approach uses techniques to enhance the accuracy of calculating the counters. The hybrid counter-based approach combines the enhanced counter-based approach and the CCCG-based approach to further improve the tightness of analysis without significantly increasing the complexity. Our experiments on a 4-core processor indicate that the enhanced counter-based approach overestimates the WCET by 14% on average compared to the CCCG-based approach, while its averaged running time is less than 1/380 that of the CCCG-based approach. The hybrid approach reduces the overestimation to only 2.65%, while its running time is less than 1/150 that of the CCCG-based approach on average.

On/Off-Design/Transient Analysis of a 50KW Turbogenerator Gas Turbine Engine (50KW 터보제너레이터용 가스터빈 엔진의 설계점/ 탈설계/과도성능해석)

  • Kim, Su-Yong;Park, Mu-Ryong;Jo, Su-Yong
    • 연구논문집
    • /
    • s.27
    • /
    • pp.87-99
    • /
    • 1997
  • Present paper describes on/off design performance of a 50KW turbogenerator gas turbine engine for hybrid vehicle application. For optimum design point selection, relevant parameter study is carried out. The turbogenerator gas turbine engine for a hybrid vehicle is expected to be designed for maximum fuel economy, ultra low emissions, and very low cost. Compressor, combustor, turbine, and permanent-magnet generator will be mounted on a single high speed (82,000 rpm) shaft that will be supported on air bearings. As the generator is built into the shaft, gearbox and other moving parts become unnecessary and thus will increase the system's reliability and reduce the manufacturing cost. The engine has a radial compressor and turbine with design point pressure ratio of 4.0. This pressure ratio was set based on calculation of specific fuel consumption and specific power variation with pressure ratio. For the given turbine inlet temperature, a rather conservative value of $1100^\circK$ was selected. Designed mass flow rate was 0.5 kg/sec. Parametric study of the cycle indicates that specific work and efficiency increase at a given pressure ratio and turbine inlet temperature. Off design analysis shows that the gas turbine system reaches self operating condition at N/$N_{DP}$ = 0.53. Bleeding air for turbine stator cooling is omitted considering low TIT and for a simple geometric structure. Various engine performance simulations including, ambient temperature influence, surging at part load condition. Transient analysis were performed to secure the optimum engine operating characteristics. Surge margin throughout the performance analysis were maintained to be over 80% approximately. Validation of present results are yet to be seen as the performance tests are scheduled by the end of 1998 for comparison.

  • PDF

Development of a New Hybrid Silicon Thin-Film Transistor Fabrication Process

  • Cho, Sung-Haeng;Choi, Yong-Mo;Kim, Hyung-Jun;Jeong, Yu-Gwang;Jeong, Chang-Oh;Kim, Shi-Yul
    • Journal of Information Display
    • /
    • v.10 no.1
    • /
    • pp.33-36
    • /
    • 2009
  • A new hybrid silicon thin-film transistor (TFT) fabrication process using the DPSS laser crystallization technique was developed in this study to realize low-temperature poly-Si (LTPS) and a-Si:H TFTs on the same substrate as a backplane of the active-matrix liquid crystal flat-panel display (AMLCD). LTPS TFTs were integrated into the peripheral area of the activematrix LCD panel for the gate driver circuit, and a-Si:H TFTs were used as a switching device of the pixel electrode in the active area. The technology was developed based on the current a-Si:H TFT fabrication process in the bottom-gate, back-channel etch-type configuration. The ion-doping and activation processes, which are required in the conventional LTPS technology, were thus not introduced, and the field effect mobility values of $4\sim5cm^2/V{\cdot}s$ and $0.5cm^2/V{\cdot}s$ for the LTPS and a-Si:H TFTs, respectively, were obtained. The application of this technology was demonstrated on the 14.1" WXGA+(1440$\times$900) AMLCD panel, and a smaller area, lower power consumption, higher reliability, and lower photosensitivity were realized in the gate driver circuit that was fabricated in this process compared with the a-Si:H TFT gate driver integration circuit

A Study of an Mobile Agent System Based on Hybrid P2P (변형 P2P 기반 시스템을 활용한 이동 에이전트 시스템에 관한 연구)

  • Lee, Seok-Hee;Yang, Il-Deung;Kim, Seong-Ryeol
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.17 no.5
    • /
    • pp.19-28
    • /
    • 2012
  • Recently a grid and cloud computing collaboration have become a social issue. These collaborative network system, the P2P system based on this system. Distingui shed from the client/server systems, P2P systems in order to exchange information, its purpose and functions are divided according to the morphological Category. In accordance with the purposes and functions of information and data retrieval, remote program control and integration services for the offers. Most P2P systems client/server scalability, and management takes the form, but to overcome the disadvantages in terms of applying the mixed-mode system is increasing. And recently the distributed computing aspects of the service to users in order to provide suitable to accommodate the diverse needs of various types of mobile agent technology is needed. In this paper, as required by the mobile agent access to a remote resource access control and agent for the execution and management capabilities and improve the reliability of the mobile agent system designed to suggest.

Improvement of Solder Joint Strength in SAC 305 Solder Ball to ENIG Substrate Using LF Hydrogen Radical Treatment (SAC 305솔더와 ENIG 기판의 접합강도에 미치는 저주파 수소라디칼처리의 영향)

  • Lee, Ah-Reum;Jo, Seung-Jae;Park, Jai-Hyun;Kang, Chung-Yun
    • Journal of Welding and Joining
    • /
    • v.29 no.1
    • /
    • pp.99-106
    • /
    • 2011
  • Joint strength between a solder ball and a pad on a substrate is one of the major factors which have effects on electronic device reliability. The effort to improve solder joint strength via surface cleaning, heat treatment and solder composition change have been in progress. This paper will discuss the method of solder ball joint strength improvement using LF hydrogen radical cleaning treatment and focus on the effects of surface treatment condition on the solder ball shear strength and interfacial reactions. In the joint without radical cleaning, voids were observed at the interface. However, the specimens cleaned by hydrogen-radical didn't have voids at the interface regardless of cleaning time. The shear strength between the solder ball and the pad was increased over 120%(about 800gf) when compared to that without the radical treatment (680gf) under the same reflow condition. Especially, at the specimen treated for 5minutes, ball shear strength was considerably increased over 150%(1150gf). Through the observation of fracture surface and cross-section microstructure, the increase of joint strength resulted from the change of fracture mode, that is, from the solder ball fracture to IMC/Ni(P) interfacial fracture. The other cases like radical treated specimen for 1, 3, 7, 9min. showed IMC/solder interfacial fracture rather than fracture in the solder ball.