• Title/Summary/Keyword: hybrid control technique

Search Result 227, Processing Time 0.031 seconds

Orientation Control of Polyoxometalate Nanoparticles in Organic- Inorganic Hybrid LB Films

  • Lee, Burm-Jong;Kim, Hee-Sang;Park, Dong-Ho;Nam, Sang-Hee;Yunghee Oh
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.4C no.1
    • /
    • pp.26-30
    • /
    • 2004
  • Orientation control of a polyoxometalate (POM) nanoparticle in its two-dimensional arrangement was attempted by Langmuir-Blodgett (LB) technique. For their uniorientation, two carboxyl groups were introduced on one side of the POM particle, and hydrophobic long chains were attached by esterification with the carboxyl groups (C18-POM). The C18-POM layer spread on water surface showed stability against surface pressure up to 60 mN/m. The pattern of the C18-POM isotherm was quite different from stearyl alcohol (C18-OH), while the POM itself did not show any development of surface pressure on water surface. The AFM images of C18-POM LB films showed some microcrystalline structures that were noticed as dot structures by Brewster angle microscopy. The microimages for C18-POM did not completely spread out as a monolayer on the water surface. The XPS spectra indicated the presence of POM structures and stearyl ester bonds formed from about 65% of the total carboxyls. The XRD spectra showed that the unioriented POMs were not positioned with the same lattice distance but rather in a wavy surface state.

An optimal discrete-time feedforward compensator for real-time hybrid simulation

  • Hayati, Saeid;Song, Wei
    • Smart Structures and Systems
    • /
    • v.20 no.4
    • /
    • pp.483-498
    • /
    • 2017
  • Real-Time Hybrid Simulation (RTHS) is a powerful and cost-effective dynamic experimental technique. To implement a stable and accurate RTHS, time delay present in the experiment loop needs to be compensated. This delay is mostly introduced by servo-hydraulic actuator dynamics and can be reduced by applying appropriate compensators. Existing compensators have demonstrated effective performance in achieving good tracking performance. Most of them have been focused on their application in cases where the structure under investigation is subjected to inputs with relatively low frequency bandwidth such as earthquake excitations. To advance RTHS as an attractive technique for other engineering applications with broader excitation frequency, a discrete-time feedforward compensator is developed herein via various optimization techniques to enhance the performance of RTHS. The proposed compensator is unique as a discrete-time, model-based feedforward compensator. The feedforward control is chosen because it can substantially improve the reference tracking performance and speed when the plant dynamics is well-understood and modeled. The discrete-time formulation enables the use of inherently stable digital filters for compensator development, and avoids the error induced by continuous-time to discrete-time conversion during the compensator implementation in digital computer. This paper discusses the technical challenges in designing a discrete-time compensator, and proposes several optimal solutions to resolve these challenges. The effectiveness of compensators obtained via these optimal solutions is demonstrated through both numerical and experimental studies. Then, the proposed compensators have been successfully applied to RTHS tests. By comparing these results to results obtained using several existing feedforward compensators, the proposed compensator demonstrates superior performance in both time delay and Root-Mean-Square (RMS) error.

Design of a Hybrid Data Value Predictor with Dynamic Classification Capability in Superscalar Processors (슈퍼스칼라 프로세서에서 동적 분류 능력을 갖는 혼합형 데이타 값 예측기의 설계)

  • Park, Hee-Ryong;Lee, Sang-Jeong
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.27 no.8
    • /
    • pp.741-751
    • /
    • 2000
  • To achieve high performance by exploiting instruction level parallelism aggressively in superscalar processors, it is necessary to overcome the limitation imposed by control dependences and data dependences which prevent instructions from executing parallel. Value prediction is a technique that breaks data dependences by predicting the outcome of an instruction and executes speculatively its data dependent instruction based on the predicted outcome. In this paper, a hybrid value prediction scheme with dynamic classification mechanism is proposed. We design a hybrid predictor by combining the last predictor, a stride predictor and a two-level predictor. The choice of a predictor for each instruction is determined by a dynamic classification mechanism. This makes each predictor utilized more efficiently than the hybrid predictor without dynamic classification mechanism. To show performance improvements of our scheme, we simulate the SPECint95 benchmark set by using execution-driven simulator. The results show that our scheme effect reduce of 45% hardware cost and 16% prediction accuracy improvements comparing with the conventional hybrid prediction scheme and two-level value prediction scheme.

  • PDF

Analysis of Toxic Heavy Meatals using Hybrid Neural Network in Glow Discharge Atomic Emission Spectroscoy (글로우 방전 원자방출에서의 Hybrid Neural Network를 이용한 유해 중금속 분석)

  • Lee, J.S.;Lee, S.C.;Choi, K.S.;Kim, Y.S.;So, S.H.;Ha, K.J.;Ryu, D.H.;Cho, T.H.;Jung, M.S.
    • Analytical Science and Technology
    • /
    • v.15 no.5
    • /
    • pp.399-409
    • /
    • 2002
  • A system software on-line spectral analysis of atomic emission spectrometer. The system program consisted of a control part for the optical instruments and the spectrum analysis part the artificial intelligence method to reduce nonlinear error of the wavelengths. McPHERSON 207 Monochromator controlled GPIB communication protocol, and the detector signal was measured from PMT by using A/D Amplifier that was made by Photon_Tek. co.. HNN(Hybrid Neural Network) of artificial intelligence technique was applied to the qualitative analysis of P, Cu, Fe, Cr, and that was accurately applied to the quantitative analysis of Cd with 10 ppb level better than the conventional methods.

Recent Progress Trend in Motor and Inverter for Hybrid Vehicle (하이브리드 자동차용 모터 및 인버터 최신 동향 분석)

  • Kim, Sung-Jin;Hong, Sueng-Min;Nam, Kwang-Hee
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.5
    • /
    • pp.381-387
    • /
    • 2016
  • Many efforts have focused on the improvement of power density and efficiency by downsizing the motor and inverter. Recently, Toyota, Honda, and GM realized that the compact-sized motor uses the hairpin structure with increased space factor. Reducing the maximum torque from high-speed technique also makes it possible to design the high-power density model. Toyota and Honda used the newly developed power semiconductor IGBT to decrease conduction loss for high-efficiency inverter. In particular, Toyota used the boost converter to increase the DC link voltage for high efficiency in low-torque high-speed region. Toyota and GM also used the double-sided cooling structure for miniaturization of inverter for high-power density.

Model Following Dual Controller Design for Random Vibrating System Using a Stochastic Controller Technique (확률제어 기법을 이용한 불규칙 진동계의 모델추종 이중제어기 설계)

  • Lee, J.B.;Kim, H.Y.;Ahn, J.Y.;Heo, H.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.525-528
    • /
    • 2005
  • Much of the study has been dong on the design of dual controller that guarantee the stability and improvement of the system performance. A dual controller concept is proposed to consist of first controller estimates the control law and second controller suppresses the combined noises due to numerical error and internal noise as well. These irregular disturbances are not only increasing the fatigue but also destabilize the system because of unwanted output performance. The 'stochastic controller' is used to suppress the irregular random disturbance. Simulation is conducted to reveal that the proposed dual stochastic controller is highly efficient one to control a system hybrid noises.

  • PDF

Model Following Dual Controller Design For Random Vibrating System Using a Stochastic Controller Technique (확률제어 기법을 이용한 불규칙 진동계의 모델추종 이중제어기 설계)

  • Lee, J.B.;Kim, H.Y.;Ahn, J.Y.;Heo, H.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.6 s.99
    • /
    • pp.757-763
    • /
    • 2005
  • Much of the study has been done on the design of dual controller that guarantee the stability and improvement of the system performance. A dual controller concept is proposed to consist of first controller estimates the control law and second controller suppresses the combined noises due to numerical error and internal noise as well. These Irregular disturbances are not only increasing the fatigue but also destabilize the system because of unwanted output Performance. The 'stochastic controller' is used to suppress the irregular random disturbance. Simulation is conducted to reveal that the proposed dual stochastic controller is highly efficient one to control a system hybrid noises.

Fuzzy gain scheduling for the gain tuning of PID controller and its application (PID 제어기의 게인 조절을 위한 퍼지 게인 스케쥴링 기법 및 응용)

  • 전재홍;이진국;김병화;안현식;김도현
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.1
    • /
    • pp.60-67
    • /
    • 1998
  • In this paper, a gain scheduling method of PID controller is proposed using fuzzy logic for balancing control of an inverted pendulum. First, gains of PID controller are calculated using pole-placement technique for the linearized model of an inverted pendulum and these gains are modified by fuzzy logic throughout control operations. A PD controller is used by switching near the set-point to improve the performance. It is illustrated by simulations that the proposed hybrid fuzzy control method yidels smaller rising time and overshoot compared to the fixed-gain PID controller or fuzzy logic-based only PID controller.

  • PDF

A study of improvement of control performance of ship by fuzzy neutral network (퍼지 신경회로망에 의한 선박의 제어성능 개선에 관한 연구)

  • Kang, Chang-Nam
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.671-672
    • /
    • 2008
  • Hybrid intelligent technique is used in ship steering control. It can make full use of the advantage of all kinds of intelligent algorithms. This provides an efficient way for this paper. An RBF neural network and GA optimization are employed in a fuzzy neural controller to deal with the nonlinearity, time varying and uncertain factors. Utilizing the designed network to substitute the conventional fuzzy inference, the rule base and membership functions can be auto-adjusted by GA optimization. The parameters of neural network can be decreased by using union-rule configuration in the hidden layer of the network. The ship control quality is effectively improved in case of appending additional sea state disturbance. The performance of controller is evaluated by the system simulation using Matlab.

  • PDF

Efficiency Optimization Control of IPMSM Drive using multi HFC (다중 HFC를 이용한 IPMSM 드라이브의 효율 최적화 제어)

  • Choi, Jung-Sik;Ko, Jae-Sun;Kang, Sung-Jun;Baek, Jeong-Woo;Jang, Mi-Geum;Kim, Soon-Young;Chung, Dong-Hwa
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.10a
    • /
    • pp.355-358
    • /
    • 2009
  • This paper proposes efficiency optimization control of IPMSM drive using multi hybrid fuzzy controller(HFC). The design of the speed controller based on fuzzy-neural network that is implemented using fuzzy control and neural network. The design of the current based on HFC using model reference and the estimation of the speed based on neural network using ANN controller. In order to maximize the efficiency in such applications, this paper proposes the optimal control method of the armature current. The controllable electrical loss which consists of the copper loss and the iron loss can be minimized by the optimal control of the armature current. The minimization of loss is possible to realize efficiency optimization control for the proposed IPMSM The optimal current can be decided according to the operating speed and the load conditions. This paper considers the design and implementation of novel technique of high performance speed control for IPMSM using multi HFC. Also, this paper proposes speed control of IPMSM using HFC1, current control of HFC2-HFC3 and estimation of speed using ANN controller. The proposed control algorithm is applied to IPMSM drive system controlled HFC, the operating characteristics controlled by efficiency optimization control are examined in detail.

  • PDF