• Title/Summary/Keyword: human-to-human (H2H)

Search Result 3,629, Processing Time 0.033 seconds

In Vitro Formation of Protein Nanoparticle Using Recombinant Human Ferritin H and L Chains Produced from E. coli

  • RO HYEON SU;PARK HYUN KYU;KIM MIN GON;CHUNG BONG HYUN
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.2
    • /
    • pp.254-258
    • /
    • 2005
  • We have conducted in vitro reconstitution study of ferritin from its subunits FerH and FerL. For the reconstitution, FerH was produced from an expression vector construct in Escherichia coli and was purified from a heat treated cell extract by using one-step column chromatography. FerL was expressed as inclusion bodies. The denatured form of FerL was obtained by a simple washing step of the inclusion bodies with 3 M urea. The reconstitution experiment was conducted with various molar ratios of urea-denatured FerH and FerL to make the ferritin nanoparticle with a controlled composition of FerH and FerL. SDS-PAGE analysis of the reconstituted ferritins revealed that the reconstitution required the presence of more than 40 molar$\%$ of FerH in the reconstitution mixture. The assembly of the subunits into the ferritin nanoparticle was confmned by the presence of spherical particles with diameter of 10 nm by the atomic force microscopic image. Further analysis of the particles by using a transmission electron microscope revealed that the reconstituted particles exhibited different percentages of population with dense iron core. The reconstituted ferritin nanoparticles made with molar ratios of [FerH]/[FerL]=l00/0 and 60/40 showed that 80 to $90\%$ of the particles were apoferritin, devoid of iron core. On the contrary, all the particles formed with [FerH]/[FerL]=85/ 15 were found to contain the iron core. This suggests that although FerH can uptake iron, a minor portion of FerL, not exceeding $40\%$ at most, is required to deposit iron inside the particle.

Molecular Mechanisms of Cell Cycle Arrest and Apoptosis by Dideoxypetrosynol A, a Polyacetylene from the Sponge Petrosia sp., in Human Monocytic Leukemia Cells

  • Choi, Yung Hyun
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.1 no.4
    • /
    • pp.243-251
    • /
    • 2006
  • Dideoxypetrosynol A, a polyacetylene from the marine sponge Petrosia sp., is known to exhibit significant selective cytotoxic activity against a small panel of human tumor cell lines, however, the mechanisms of which are poorly understood. In the present study, it was investigated the further possible mechanisms by which dideoxytetrosynol A exerts its anti-proliferative action in cultured human leukemia cell line U937. We observed that the proliferation-inhibitory effect of dideoxypetrosynol A was due to the induction of G1 arrest of the cell cycle and apoptosis, which effects were associated with up-regulation of cyclin D1 and down-regulation of cyclin E without any change in cyclin-dependent-kinases (Cdks) expression. Dideoxypetrosynol A markedly induced the levels of Cdk inhibitor p16/INK4a expression. Furthermore, down-regulation of phosphorylation of retinoblastoma protein (pRB) by this compound was associated with enhanced binding of pRB and the transcription factor E2F-1. The increase in apoptosis was associated with a dose-dependent up-regulation in pro-apoptotic Bax expression and activation of caspase-3 and caspase-9. Dideoxytetrosynol A decreased the levels of cyclooxygenase (COX)-2 mRNA and protein expression without significant changes in the levels of COX-1, which was correlated with a decrease in prostaglandin E2 (PGE2) synthesis. Furthermore, dideoxytetrosynol A treatment markedly inhibited the activity of telomerase, and the expression of human telomerase reverse transcriptase (hTERT), a main determinant of the telomerase enzymatic activity, was progressively down-regulated by dideoxytetrosynol A treatment in a dose-dependent fashion. Taken together, these findings provide important new insights into the possible molecular mechanisms of the anti-cancer activity of dideoxytetrosynol A.

  • PDF

Methanol extract of Myelophycus caespitosus ameliorates oxidative stress-induced cytotoxicity in C2C12 murine myoblasts via activation of heme oxygenase-1

  • Cheol Park;Hyun Hwangbo;Min Ho Han;Jin-Woo Jeong;Suengmok Cho;Gi-Young Kim;Hye-Jin Hwang;Yung Hyun Choi
    • Fisheries and Aquatic Sciences
    • /
    • v.26 no.1
    • /
    • pp.35-47
    • /
    • 2023
  • Myelophycus caespitosus, a brown alga belonging to genus Myelophycus, has been traditionally used as a food and medicinal resource in Northeastern Asia. However, few studies have been conducted on its pharmacological activity. In this study, we evaluated whether methanol extract of M. caespitosus (MEMC) could protect against oxidative damage caused by hydrogen peroxide (H2O2) in C2C12 murine myoblasts. Our results revealed that MEMC could suppress H2O2-induced growth inhibition and DNA damage while blocking the production of reactive oxygen species. In H2O2-treated cells, cell cycle progression was halted at the G2/M phase, accompanied by changes in expression of key cell cycle regulators. However, these effects were attenuated by MEMC. In addition, we found that MEMC protected cells from induction of apoptosis associated with mitochondrial impairment caused by H2O2 treatment. Furthermore, MEMC enhanced the phosphorylation of nuclear factor-erythroid-2 related factor 2 (Nrf2) and expression and activity of heme oxygenase-1 (HO-1) in H2O2-treaetd C2C12 myoblasts. However, such anti-apoptotic and cytoprotective effects of MEMC were greatly abolished by HO-1 inhibitor, suggesting that MEMC could increase Nrf2-mediated activity of HO-1 to protect C2C12 myoblasts from oxidative stress.

Assay of ${\beta}$-Glucosidase Activity of Bifidobacteria and the Hydrolysis of Isoflavone Glycosides by Bifidobacterium sp. Int-57 in Soymilk Fermentation

  • Jeon, Ki-Suk;Ji, Geun-Eog;Hwang, In-Kyeong
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.1
    • /
    • pp.8-13
    • /
    • 2002
  • The isoflavone glycosides are hydrolyzed by ${\beta}$-glucosidase from gut microbes to the bioactive aglycones. However, the specific bacteria from the human intestinal tract that are involved in the metabolism of these compounds are not known. This study was undertaken to develop a fermented soymilk which converts isoflavones to the more bioactive aglycones form using a Bifidobacterium strain. The ${\beta}$-glucosidase activity of 15 Bifidobacterium strains were measured during cell growth. Among them, Bifidobacterium sp. Int-57 was selected for this study, because it has the highest ${\beta}$-glucosidase activity. Growth, acid development, ${\beta}$-glucosidase activity, and the hydrolysis of daidzin and genistin were investigated in four soymilks inoculated with Bifidobacterium sp. Int-57. After 12 h of fermentation, the counts of viable Bifidobacterium sp. Int-57 in all the soymilks reached a level of more than $10^8$ cfu/ml, which was then maintained. The pH of soymilks started to decrease rapidly after 6 h of fermentation and leveled off after 18 h. The titratable acidity of BL# 1 soymilk, BL#2 soymilk, and JP#l soymilk increased from 0.18 to 1.21, 1.15, and $1.08\%$ over the fermentation period, respectively. After 24 h of fermentation, the $\beta$-glucosidase activity in BL#1 soymilk, BL#2 soymilk, JP#l soymilk, and JP#2 soymilk increased to 59.528, 40.643, 70.844, and 56.962 mU/ml, respectively. The isoflavone glycosides, daidzin and genistin, in soymilks were hydrolyzed completely in the relatively short fermentation time of 18 h. These results show that Bifidobacterium sp. Int-57 can be used as a potential starter culture for developing fermented soymilk which has completely hydrolyzed isoflavone glycosides.

Anti-Oxidative and Anti-Inflammatory Activities of Cotoneaster horizontalis Decne Extract (Cotoneaster horizontalis Decne 추출물의 항산화 및 항염증 활성)

  • Lee, Ji Young;Jin, Kyong-Suk;Kwon, Hyun Ju;Kim, Byung Woo
    • Microbiology and Biotechnology Letters
    • /
    • v.43 no.3
    • /
    • pp.280-285
    • /
    • 2015
  • Anti-oxidative and anti-inflammatory activities of Cotoneaster horizontalis Decne ethanol extract (CHEE) were evaluated. CHEE possessed a potent scavenging activity against 1,1-diphenyl-2-picryl hydrazyl, which was similar to the activity of ascorbic acid which was used as a positive control. CHEE also effectively suppressed hydrogen peroxide-induced reactive oxygen species on RAW 264.7 cells. Furthermore, CHEE induced the expression of the anti-oxidative enzyme heme oxygenase 1, and its upstream transcription factor, nuclear factor-E2-related factor 2. CHEE inhibited LPS induced nitric oxide (NO) formation as a consequence of inducible NO synthase (iNOS) down regulation. Taken together, these results provide us with an important new insight; that C. horizontalis possesses anti-oxidative and anti-inflammatory activities. Therefore, C. horizontalis may be utilized as a promising material in the field of nutraceuticals.

Differential Signaling via Tumor Necrosis Factor-Associated Factors (TRAFs) by CD27 and CD40 in Mouse B Cells

  • Woo, So-Youn;Park, Hae-Kyung;Bishop, Gail A.
    • IMMUNE NETWORK
    • /
    • v.4 no.3
    • /
    • pp.143-154
    • /
    • 2004
  • Background: CD27 is recently known as a memory B cell marker and is mainly expressed in activated T cells, some B cell population and NK cells. CD27 is a member of tumor necrosis factor receptor family. Like CD40 molecule, CD27 has (P/S/T/A) X(Q/E)E motif for interacting with TNF receptor-associated factors (TRAFs), and TRAF2 and TRAF5 bindings to CD27 in 293T cells were reported. Methods: To investigate the CD27 signaling effect in B cells, human CD40 extracellular domain containing mouse CD27 cytoplamic domain construct (hCD40-mCD27) was transfected into mouse B cell line CH12.LX and M12.4.1. Results: Through the stimulation of hCD40-mCD27 molecule via anti-human CD40 antibody or CD154 ligation, expression of CD11a, CD23, CD54, CD70 and CD80 were increased and secretion of IgM was induced, which were comparable to the effect of CD40 stimulation. TRAF2 and TRAF3 were recruited into lipid-enriched membrane raft and were bound to CD27 in M12.4.1 cells. CD27 stimulation, however, did not increase TRAF2 or TRAF3 degradation. Conclusion: In contrast to CD40 signaling pathway, TRAF2 and TRAF3 degradation was not observed after CD27 stimulation and it might contribute to prolonged B cell activation through CD27 signaling.

Screening of Natural Herb Methanol Extracts for Antioxidant Activity in V79-4 cells (천연 허브 메탄올 추출물의 V79-4 세포에서 항산화 활성 검색)

  • Chang, Jeong-Hwa;Yoo, Kyung-Mi;Hwang, In-Kyeong
    • Korean journal of food and cookery science
    • /
    • v.22 no.4 s.94
    • /
    • pp.428-437
    • /
    • 2006
  • To investigate the worth of herbs as functional food ingredients, the antioxidant activity of 15 kinds of herb mathanol extracts was evaluated. Green tea, chamomile, dandelion, and lemon vervena extracts, with IC$_{50}$ values of 1.45 g/100mL, 1.49 g/100mL, 1.50 g/100mL and 1.55 g/100mL, respectively, had significantly higher superoxide radical scavenging activity than any other herb extracts. Green tea and lemon vervena extracts, which had high radical scavenging activity, showed inhibition of cell proliferation in Chinese hamster lung fibroblasts (V79-4 cells). Most herb extracts, except for chamomile, fennel and dandelion enhanced cell viability against H$_2$O$_2$-induced oxidative damage in V79-4 cells. At a dose of 1600 ${\mu}$g/mL, lemon vervena, green tea, hawthorn and rosemary extracts showed a cell viability of more than 50% which was significantly higher than that of the control culture treated with only H$_2$O$_2$ Thus, the results suggest that some herb extracts exhibited a V79-4 cell protective effect. The investigation of the cellular antioxidant enzymes activities of the five selected herb extracts revealed that extracts of lemon vervena and chamomile dose-dependently increased superoxide dismutase and glutathione peroxidase activity but that this increase was not significant. In conclusion, some natural herb extracts exhibited high antioxidant activity.

Quality Characteristics and Antioxidant Activity of Makgeolli Supplemented with Omija Berries (Schizandra chinensis Baillon) (오미자를 첨가한 막걸리의 품질특성 및 항산화 활성)

  • Song, Young-Ran;Lim, Byeong-Uk;Song, Geun-Seoup;Baik, Sang-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.47 no.3
    • /
    • pp.328-335
    • /
    • 2015
  • The objective of this study was to evaluate the quality characteristics of the Korean rice wine, makgeolli, supplemented with omija berries (Schizandra chinensis Baillon) during the fermentation. The changes in pH, total acidity and contents of ethanol, amino acid, total soluble solids, reducing sugar, and total sugar after the completion of fermentation were determined. In comparison with control, omija-supplemented makgeolli showed significantly lower pH (3.46), lower contents of alcohol (17.2%), amino acids (1.85 g/L), and total sugar (17.5 g/L), and higher acidity (12.8 g/L). Moreover, supplementation with omija resulted in significantly higher antioxidant capacity of 1,1-diphenyl-2-picrylhydrazyl (DPPH) and hydroxyl radical scavenging activities, superoxide dismutase-like activity and reducing power, and higher levels of total polyphenol and flavonoid. Sensory evaluation revealed no significant difference on the overall acceptance, although better appearance and refreshing taste of omija-supplemented makgeolli were observed. Our results indicate that omija represents an effective natural additive for enhancing the biological activities of makgeolli.

Helicobacter pylori Infection and a P53 Codon 72 Single Nucleotide Polymorphism: a Reason for an Unexplained Asian Enigma

  • Pandey, Renu;Misra, Vatsala;Misra, Sri Prakash;Dwivedi, Manisha;Misra, Alok
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.21
    • /
    • pp.9171-9176
    • /
    • 2014
  • Aim: P53, the most commonly mutated tumor suppressor gene in all types of human cancer, is involved in cell cycle arrest and control of apoptosis. Although p53 contains several polymorphic sites, the codon 72 polymorphism is by far more common. There are divergent reports but many studies suggest p53 pro/pro SNP may be associated with susceptibility to developing various cancers in different regions of the world. The present study aimed to find any correlation between H. pylori infection and progression of carcinogenesis, by studying apoptosis and the p53 gene in gastric biopsies from north Indian population. Materials and Methods: A total of 921 biopsies were collected and tested for prevalence of H. pylori by rapid urease test (RUT), imprint cytology and histology. Apoptosis was studied by the TUNEL method. Analysis of p53 gene polymorphism at codon 72 was accomplished by PCR using restriction enzyme BstU1. Observation: Out of 921 samples tested 56.7% (543) were H. pylori positive by the three techniques. The mean apoptotic index (AI) in the normal group was 2.12, while gastritis had the maximum 4.24 followed by gastric ulcer 2.28, gastropathy 2.22 and duodenal ulcer 2.08. Mean AI in cases with gastric cancer (1.72) was less than the normal group. The analysis of p53 72 SNP revealed that p53 (Arg/Arg), (Pro /Arg) variant are higher (40.59% & 33.66%) as compared to p53 pro/pro variant (25.74%) inthe healthy population. Conclusions: The North Indian population harbors Arg or Pro/Arg SNP that is capable of withstanding stress conditions; this may be the reason of low incidence of gastric disease in spite of high infection with H. pylori. There was no significant association with H. pylori infection and AI. However, there is increased apoptosis in gastritis which may occur independent of H. pylori or p53 polymorphism.

Identification of Suitable Natural Inhibitor against Influenza A (H1N1) Neuraminidase Protein by Molecular Docking

  • Sahoo, Maheswata;Jena, Lingaraja;Rath, Surya Narayan;Kumar, Satish
    • Genomics & Informatics
    • /
    • v.14 no.3
    • /
    • pp.96-103
    • /
    • 2016
  • The influenza A (H1N1) virus, also known as swine flu is a leading cause of morbidity and mortality since 2009. There is a need to explore novel anti-viral drugs for overcoming the epidemics. Traditionally, different plant extracts of garlic, ginger, kalmegh, ajwain, green tea, turmeric, menthe, tulsi, etc. have been used as hopeful source of prevention and treatment of human influenza. The H1N1 virus contains an important glycoprotein, known as neuraminidase (NA) that is mainly responsible for initiation of viral infection and is essential for the life cycle of H1N1. It is responsible for sialic acid cleavage from glycans of the infected cell. We employed amino acid sequence of H1N1 NA to predict the tertiary structure using Phyre2 server and validated using ProCheck, ProSA, ProQ, and ERRAT server. Further, the modelled structure was docked with thirteen natural compounds of plant origin using AutoDock4.2. Most of the natural compounds showed effective inhibitory activity against H1N1 NA in binding condition. This study also highlights interaction of these natural inhibitors with amino residues of NA protein. Furthermore, among 13 natural compounds, theaflavin, found in green tea, was observed to inhibit H1N1 NA proteins strongly supported by lowest docking energy. Hence, it may be of interest to consider theaflavin for further in vitro and in vivo evaluation.