DOI QR코드

DOI QR Code

Anti-Oxidative and Anti-Inflammatory Activities of Cotoneaster horizontalis Decne Extract

Cotoneaster horizontalis Decne 추출물의 항산화 및 항염증 활성

  • Lee, Ji Young (Blue-Bio Industry Regional Innovation Center, College of Natural Science &Human Ecology, Dong-Eui University) ;
  • Jin, Kyong-Suk (Blue-Bio Industry Regional Innovation Center, College of Natural Science &Human Ecology, Dong-Eui University) ;
  • Kwon, Hyun Ju (Blue-Bio Industry Regional Innovation Center, College of Natural Science &Human Ecology, Dong-Eui University) ;
  • Kim, Byung Woo (Blue-Bio Industry Regional Innovation Center, College of Natural Science &Human Ecology, Dong-Eui University)
  • 이지영 (동의대학교 블루바이오소재개발 및 실용화 지원센터) ;
  • 진경숙 (동의대학교 블루바이오소재개발 및 실용화 지원센터) ;
  • 권현주 (동의대학교 블루바이오소재개발 및 실용화 지원센터) ;
  • 김병우 (동의대학교 블루바이오소재개발 및 실용화 지원센터)
  • Received : 2015.07.31
  • Accepted : 2015.09.02
  • Published : 2015.09.28

Abstract

Anti-oxidative and anti-inflammatory activities of Cotoneaster horizontalis Decne ethanol extract (CHEE) were evaluated. CHEE possessed a potent scavenging activity against 1,1-diphenyl-2-picryl hydrazyl, which was similar to the activity of ascorbic acid which was used as a positive control. CHEE also effectively suppressed hydrogen peroxide-induced reactive oxygen species on RAW 264.7 cells. Furthermore, CHEE induced the expression of the anti-oxidative enzyme heme oxygenase 1, and its upstream transcription factor, nuclear factor-E2-related factor 2. CHEE inhibited LPS induced nitric oxide (NO) formation as a consequence of inducible NO synthase (iNOS) down regulation. Taken together, these results provide us with an important new insight; that C. horizontalis possesses anti-oxidative and anti-inflammatory activities. Therefore, C. horizontalis may be utilized as a promising material in the field of nutraceuticals.

Cotoneaster horizontalis Decne 에탄올 추출물(CHEE)의 항산화능과 항염증 생리활성을 분석하였다. CHEE의 항산화능을 DPPH radical scavenging activity로 분석한 결과 radical 소거능의 정도가 양성 대조군으로 사용한 ascorbic acid와 유사한 정도의 높은 활성을 보여 매우 강한 항산화능을 보유함을 확인하였다. 또한 RAW 264.7 세포주를 이용하여 H2O2 유도에 의해 생성된 ROS에 대한 소거능을 분석한 결과에서도 강한 소거능을 보였다. 뿐만 아니라 항산화효소 HO-1 및 그 전사 인자인 Nrf2의 단백질 발현이 CHEE의 처리에 의해 증가되었다. 한편 CHEE가 LPS에 의해 유도된 NO 생성에 미치는 영향을 분석한 결과 농도의존적인 NO 생성 저해능을 보였으며 이는 NO 생성 단백질인 iNOS의 발현 저해에서 기인함을 확인하였다. 이러한 결과를 통해 C. horizontalis의 항산화능과 항염증 활성을 세포 수준에서 처음으로 확인하였으며 향후 기능성 소재로서 유용하게 활용될 수 있을 것으로 판단된다.

Keywords

References

  1. Cencioni C, Spallotta F, Martelli F, Valente S, Mai A, Zeiher AM, Gaetano C. 2013. Oxidative stress and epigenetic regulation in ageing and age-related diseases. Int. J. Mol. Sci. 14: 17643−17663. https://doi.org/10.3390/ijms140917643
  2. Chapple SJ, Siow RC, Mann GE. 2012. Crosstalk between Nrf2 and the proteasome: therapeutic potential of Nrf2 inducers in vascular disease and aging. Int. J. Biochem. Cell Biol. 44: 1315−1320. https://doi.org/10.1016/j.biocel.2012.04.021
  3. Chawla A, Nguyen KD, Goh YP. 2011. Macrophage-mediated inflammation in metabolic disease. Nat. Rev. Immunol. 11: 738−749. https://doi.org/10.1038/nri3071
  4. Giudice A, Arra C, Turco MC. 2010. Review of molecular mechanisms involved in the activation of the Nrf2-ARE signaling pathway by chemopreventive agents. Methods Mol. Biol. 647: 37−74. https://doi.org/10.1007/978-1-60761-738-9_3
  5. Gonzalez-Burgos E, Gomez-Serranillos MP. 2012. Terpene compounds in nature: a review of their potential antioxidant activity. Curr. Med. Chem. 19: 5319−5341. https://doi.org/10.2174/092986712803833335
  6. Grivennikov SI, Greten FR, Karin M. 2010. Immunity, inflammation, and cancer. Cell 140: 883−899. https://doi.org/10.1016/j.cell.2010.01.025
  7. Hu R, Saw CL, Yu R, Kong AN. 2010. Regulation of NF-E2- related factor 2 signaling for cancer chemoprevention: antioxidant coupled with antiinflammatory. Antioxid. Redox Signal. 13: 1679−1698. https://doi.org/10.1089/ars.2010.3276
  8. Kalyanaraman B. 2013. Teaching the basics of redox biology to medical and graduate students: Oxidants, antioxidants and disease mechanisms. Redox Biol. 1: 244−257. https://doi.org/10.1016/j.redox.2013.01.014
  9. Kedare SB, Singh RP. 2011. Genesis and development of DPPH method of antioxidant assay. J. Food Sci. Technol. 48: 412−422. https://doi.org/10.1007/s13197-011-0251-1
  10. Khan S WZ, Wang R, Zhang L. 2014. Horizontoates A-C: New cholinesterase inhibitors from Cotoneaster horizontalis. Phytochemistry Letters 10: 204−208. https://doi.org/10.1016/j.phytol.2014.09.007
  11. Khansari N, Shakiba Y, Mahmoudi M. 2009. Chronic inflammation and oxidative stress as a major cause of age-related diseases and cancer. Recent Pat. Inflamm. Allergy Drug Discov. 3: 73−80. https://doi.org/10.2174/187221309787158371
  12. Kundu JK, Surh YJ. 2008. Inflammation: gearing the journey to cancer. Mutat. Res. 659: 1−30. https://doi.org/10.1016/j.mrrev.2008.04.008
  13. Kundu JK, Surh YJ. 2012. Emerging avenues linking inflammation and cancer. Free Radic. Biol. Med. 52: 2013−2037. https://doi.org/10.1016/j.freeradbiomed.2012.02.035
  14. Lee JC, Hou MF, Huang HW, Chang FR, Yeh CC, Tang JY, et al. 2013. Marine algal natural products with anti-oxidative, anti-inflammatory, and anti-cancer properties. Cancer Cell Int. 13: 55. https://doi.org/10.1186/1475-2867-13-55
  15. Li J, Zhang H, Huang W, Qian H, Li Y. 2012. TNF-alpha inhibitors with anti-oxidative stress activity from natural products. Curr. Top Med. Chem. 12: 1408−1421. https://doi.org/10.2174/156802612801784434
  16. Liochev SI. 2013. Reactive oxygen species and the free radical theory of aging. Free Radic. Biol. Med. 60: 1−4. https://doi.org/10.1016/j.freeradbiomed.2013.02.011
  17. Lu Y, Suh SJ, Kwak CH, Kwon KM, Seo CS, Li Y, et al. 2012. Saucerneol F, a new lignan, inhibits iNOS expression via MAPKs, NF-kappaB and AP-1 inactivation in LPS-induced RAW264.7 cells. Int. Immunopharmacol. 12: 175−181. https://doi.org/10.1016/j.intimp.2011.11.008
  18. Mohamed SA SN, El-Gindi O, Ali ZY, Alfishawy IM. 2012. Phytoconstituents Investigation, Anti-diabetic and Anti-dyslipidemic Activities of Cotoneaster horizontalis Decne Cultivated in Egypt. Life Sci. J. 9: 394−403.
  19. Park CM, Jin KS, Lee YW, Song YS. 2011. Luteolin and chicoric acid synergistically inhibited inflammatory responses via inactivation of PI3K-Akt pathway and impairment of NF-kappaB translocation in LPS stimulated RAW 264.7 cells. Eur. J. Pharmacol. 660: 454−459. https://doi.org/10.1016/j.ejphar.2011.04.007
  20. Park CM, Park JY, Noh KH, Shin JH, Song YS. 2011. Taraxacum officinale Weber extracts inhibit LPS-induced oxidative stress and nitric oxide production via the NF-kappaB modulation in RAW 264.7 cells. J. Ethnopharmacol. 133: 834−842. https://doi.org/10.1016/j.jep.2010.11.015
  21. Pillai S, Oresajo C, Hayward J. 2005. Ultraviolet radiation and skin aging: roles of reactive oxygen species, inflammation and protease activation, and strategies for prevention of inflammation-induced matrix degradation - a review. Int. J. Cosmet. Sci. 27: 17−34. https://doi.org/10.1111/j.1467-2494.2004.00241.x
  22. Reuter S, Gupta SC, Chaturvedi MM, Aggarwal BB. 2010. Oxidative stress, inflammation, and cancer: how are they linked? Free Radic. Biol. Med. 49: 1603−1616. https://doi.org/10.1016/j.freeradbiomed.2010.09.006
  23. Saw CL, Wu Q, Su ZY, Wang H, Yang Y, Xu X, et al. 2013. Effects of natural phytochemicals in Angelica sinensis (Danggui) on Nrf2-mediated gene expression of phase II drug metabolizing enzymes and anti-inflammation. Biopharm. Drug Dispos. 34: 303−311. https://doi.org/10.1002/bdd.1846
  24. Sokkar N E-GO, Sayed S, Mohamed S, Ali Z, Alfishawy I. 2013. Antioxidant, andticancer and hepatoprotective activities of Cotoneaster horizontalis Decne extract as well as a-tocopherol and amygdalin production from in vitro culture. Acta Physiol. Plant. 35: 2421−2428. https://doi.org/10.1007/s11738-013-1276-z
  25. Su ZY, Shu L, Khor TO, Lee JH, Fuentes F, Kong AN. 2013. A perspective on dietary phytochemicals and cancer chemoprevention: oxidative stress, nrf2, and epigenomics. Top Curr. Chem. 329: 133−162.
  26. Tsai HH, Lee WR, Wang PH, Cheng KT, Chen YC, Shen SC. 2013. Propionibacterium acnes-induced iNOS and COX-2 protein expression via ROS-dependent NF-kappaB and AP-1 activation in macrophages. J. Dermatol. Sci. 69: 122−131. https://doi.org/10.1016/j.jdermsci.2012.10.009
  27. Wang FW, Wang Z, Zhang YM, Du ZX, Zhang XL, Liu Q, et al. 2013. Protective effect of melatonin on bone marrow mesenchymal stem cells against hydrogen peroxide-induced apoptosis in vitro. J. Cell Biochem. 114: 2346−2355. https://doi.org/10.1002/jcb.24582
  28. Yagi H, Tan J, Tuan RS. 2013. Polyphenols suppress hydrogen peroxide-induced oxidative stress in human bone-marrow derived mesenchymal stem cells. J. Cell Biochem. 114: 1163−1173. https://doi.org/10.1002/jcb.24459
  29. Zhang M, An C, Gao Y, Leak RK, Chen J, Zhang F. 2013. Emerging roles of Nrf2 and phase II antioxidant enzymes in neuroprotection. Prog. Neurobiol. 100: 30−47. https://doi.org/10.1016/j.pneurobio.2012.09.003
  30. Zhang R, Kang KA, Piao MJ, Maeng YH, Lee KH, Chang WY, et al. 2009. Cellular protection of morin against the oxidative stress induced by hydrogen peroxide. Chem. Biol. Interact. 177: 21−27. https://doi.org/10.1016/j.cbi.2008.08.009
  31. Zhao CR, Gao ZH, Qu XJ. 2010. Nrf2-ARE signaling pathway and natural products for cancer chemoprevention. Cancer Epidemiol. 34: 523−533. https://doi.org/10.1016/j.canep.2010.06.012

Cited by

  1. Chemical constituents, radical scavenging activity and enzyme inhibitory capacity of fruits from Cotoneaster pannosus Franch. vol.8, pp.5, 2015, https://doi.org/10.1039/c7fo00330g
  2. 항염증 물질 생산 능력이 우수한 야생효모의 선별 및 이들의 균학적 특성 vol.45, pp.3, 2017, https://doi.org/10.4489/kjm.20170025