Acknowledgement
This research was supported by Korea Institute of Marine Science & Technology Promotion (KIMST) funded by the Ministry of Oceans and Fisheries, Korea (20220488).
References
- Abrigo J, Simon F, Cabrera D, Vilos C, Cabello-Verrugio C. Mitochondrial dysfunction in skeletal muscle pathologies. Curr Protein Pept Sci. 2019;20:536-46. https://doi.org/10.2174/1389203720666190402100902
- Besednova NN, Andryukov BG, Zaporozhets TS, Kuznetsova TA, Kryzhanovsky SP, Ermakova SP, et al. Molecular targets of brown algae phlorotannins for the therapy of inflammatory processes of various origins. Mar Drugs. 2022;20:243.
- Bock FJ, Tait SWG. Mitochondria as multifaceted regulators of cell death. Nat Rev Mol Cell Biol. 2020;21:85-100. https://doi.org/10.1038/s41580-019-0173-8
- Carroll AR, Copp BR, Davis RA, Keyzers RA, Prinsep MR. Marine natural products. Nat Prod Rep. 2021;38:362-413. https://doi.org/10.1039/D0NP00089B
- Choi YH. Trans-cinnamaldehyde protects C2C12 myoblasts from DNA damage, mitochondrial dysfunction and apoptosis caused by oxidative stress through inhibiting ROS production. Genes Genomics. 2021;43:303-12. https://doi.org/10.1007/s13258-020-00987-9
- Choi YH. Tacrolimus induces apoptosis in leukemia Jurkat cells through inactivation of the reactive oxygen species-dependent phosphoinositide-3-kinase/Akt signaling pathway. Biotechnol Bioprocess Eng. 2022;27:183-92. https://doi.org/10.1007/s12257-021-0199-6
- Dai Y, Jin F, Wu W, Kumar SK. Cell cycle regulation and hematologic malignancies. Blood Sci. 2019;1:34-43. https://doi.org/10.1097/BS9.0000000000000009
- Di Filippo ES, Mancinelli R, Pietrangelo T, La Rovere RM, Quattrocelli M, Sampaolesi M, et al. Myomir dysregulation and reactive oxygen species in aged human satellite cells. Biochem Biophys Res Commun. 2016;473:462-70. https://doi.org/10.1016/j.bbrc.2016.03.030
- Di Meo S, Iossa S, Venditti P. Skeletal muscle insulin resistance: role of mitochondria and other ROS sources. J Endocrinol. 2017;233:R15-42. https://doi.org/10.1530/JOE-16-0598
- Ding Y, Zhang Z, Yue Z, Ding L, Zhou Y, Huang Z, et al. Rosmarinic acid ameliorates H2O2-induced oxidative stress in L02 cells through MAPK and Nrf2 pathways. Rejuvenation Res. 2019;22:289-98. https://doi.org/10.1089/rej.2018.2107
- Drysch M, Schmidt SV, Becerikli M, Reinkemeier F, Dittfeld S, Wagner JM, et al. Myostatin deficiency protects C2C12 cells from oxidative stress by inhibiting intrinsic activation of apoptosis. Cells. 2021;10:1680.
- Fulle S, Sancilio S, Mancinelli R, Gatta V, Di Pietro R. Dual role of the caspase enzymes in satellite cells from aged and young subjects. Cell Death Dis. 2013;4:e955.
- Hanyuda T, Aoki S, Kawai H. Reinstatement of Myelophycus caespitosus (Scytosiphonaceae, Phaeophyceae) from Japan. Phycol Res. 2020;68:126-34. https://doi.org/10.1111/pre.12405
- Jayasooriya RGPT, Kang CH, Jang YJ, Kang SH, Dilshara MG, Choi YH, et al. Methanol extract of Myelophycus caespitosus inhibits the inflammatory response in lipopolysaccharide-stimulated BV2 microglial cells by downregulating NF-kB via Inhibition of the Akt signaling pathway. Trop J Pharm Res. 2012;11:917-24.
- Jayawardena TU, Asanka Sanjeewa KK, Shanura Fernando IP, Ryu BM, Kang MC, Jee Y, et al. Sargassum horneri (Turner) C. Agardh ethanol extract inhibits the fine dust inflammation response via activating Nrf2/HO-1 signaling in RAW 264.7 cells. BMC Complement Altern Med. 2018;18:249.
- Jenkins T, Gouge J. Nrf2 in cancer, detoxifying enzymes and cell death programs. Antioxidants. 2021;10:1030.
- Jeong MJ, Lim DS, Kim SO, Park C, Leem SH, Lee H, et al. Protection of oxidative stress-induced DNA damage and apoptosis by rosmarinic acid in murine myoblast C2C12 cells. Biotechnol Bioprocess Eng. 2022;27:171-82. https://doi.org/10.1007/s12257-021-0248-1
- Ji LL. Redox signaling in skeletal muscle: role of aging and exercise. Adv Physiol Educ. 2015;39:352-9. https://doi.org/10.1152/advan.00106.2014
- Kang JS, Choi IW, Han MH, Lee DS, Kim GY, Hwang HJ, et al. The cytoprotective effect of Petalonia binghamiae methanol extract against oxidative stress in C2C12 myoblasts: mediation by upregulation of heme oxygenase-1 and nuclear factor-erythroid 2 related factor 2. Mar Drugs. 2015;13:2666-79. https://doi.org/10.3390/md13052666
- Kopp B, Khoury L, Audebert M. Validation of the γH2AX biomarker for genotoxicity assessment: a review. Arch Toxicol. 2019;93:2103-14. https://doi.org/10.1007/s00204-019-02511-9
- Lekshmi VS, Rauf AA, Muraleedhara Kurup G. Sulfated polysaccharides from the edible marine algae Padina tetrastromatica attenuates isoproterenol-induced oxidative damage via activation of PI3K/Akt/Nrf2 signaling pathway: an in vitro and in vivo approach. Chem Biol Interact. 2019;308:258-68. https://doi.org/10.1016/j.cbi.2019.05.044
- Li J, Yang Q, Han L, Pan C, Lei C, Chen H, et al. C2C12 mouse myoblasts damage induced by oxidative stress is alleviated by the antioxidant capacity of the active substance phloretin. Front Cell Dev Biol. 2020;8:541260.
- Liu Y, Guo Z, Wang S, Liu Y, Wei Y. Fucoxanthin pretreatment ameliorates visible light-induced phagocytosis disruption of RPE cells under a lipid-rich environment via the Nrf2 pathway. Mar Drugs. 2021;20:15.
- Mubarok W, Elvitigala KCML, Nakahata M, Kojima M, Sakai S. Modulation of cell-cycle progression by hydrogen peroxide-mediated cross-linking and degradation of cell-adhesive hydrogels. Cells. 2022;11:881.
- Mukherjee S, Park JP, Yun JW. Carboxylesterase3 (Ces3) interacts with bone morphogenetic protein 11 and promotes differentiation of osteoblasts via Smad1/5/9 pathway. Biotechnol Bioprocess Eng. 2022;27:1-16. https://doi.org/10.1007/s12257-021-0133-y
- Niu T, Fu G, Zhou J, Han H, Chen J, Wu W, et al. Floridoside exhibits antioxidant properties by activating HO-1 expression via p38/ERK MAPK pathway. Mar Drugs. 2020;18:105.
- Park C, Hong SH, Shin SS, Lee DS, Han MH, Cha HJ, et al. Activation of the Nrf2/HO-1 signaling pathway contributes to the protective effects of Sargassum serratifolium extract against oxidative stress-induced DNA damage and apoptosis in SW1353 human chondrocytes. Int J Environ Res Public Health. 2018;15:1173.
- Park C, Lee H, Hong S, Molagoda IMN, Jeong JW, Jin CY, et al. Inhibition of lipopolysaccharide-induced inflammatory and oxidative responses by trans-cinnamaldehyde in C2C12 myoblasts. Int J Med Sci. 2021;18:2480-92. https://doi.org/10.7150/ijms.59169
- Pradhan B, Nayak R, Patra S, Jit BP, Ragusa A, Jena M. Bioactive metabolites from marine algae as potent pharmacophores against oxidative stress-associated human diseases: a comprehensive review. Molecules. 2020;26:37.
- Rahmanian N, Shokrzadeh M, Eskandani M. Recent advances in γH2AX biomarker-based genotoxicity assays: a marker of DNA damage and repair. DNA Repair (Amst). 2021;108:103243.
- Rui Y, Li S, Luan F, Li D, Liu R, Zeng N. Several alkaloids in Chinese herbal medicine exert protection in acute kidney injury: focus on mechanism and target analysis. Oxid Med Cell Longev. 2022;2022:2427802.
- Sambasivan R, Tajbakhsh S. Adult skeletal muscle stem cells. Results Probl Cell Differ. 2015;56:191-213. https://doi.org/10.1007/978-3-662-44608-9_9
- Santa-Gonzalez GA, Gomez-Molina A, Arcos-Burgos M, Meyer JN, Camargo M. Distinctive adaptive response to repeated exposure to hydrogen peroxide associated with upregulation of DNA repair genes and cell cycle arrest. Redox Biol. 2016;9:124-33. https://doi.org/10.1016/j.redox.2016.07.004
- Sarwar MS, Xia YX, Liang ZM, Tsang SW, Zhang HJ. Mechanistic pathways and molecular targets of plant-derived anticancer ent-kaurane diterpenes. Biomolecules. 2020;10:144.
- Sivandzade F, Bhalerao A, Cucullo L. Analysis of the mitochondrial membrane potential using the cationic JC-1 dye as a sensitive fluorescent probe. Bio Protoc. 2019;9:e3128.
- Song BR, Alam MB, Lee SH. Terpenoid-rich extract of Dillenia indica L. bark displays antidiabetic action in insulin-resistant C2C12 cells and STZ-induced diabetic mice by attenuation of oxidative stress. Antioxidants (Basel). 2022;11:1227.
- Steinbacher P, Eckl P. Impact of oxidative stress on exercising skeletal muscle. Biomolecules. 2015;5:356-77. https://doi.org/10.3390/biom5020356
- Taylor WR, Stark GR. Regulation of the G2/M transition by p53. Oncogene. 2001;20:1803-15. https://doi.org/10.1038/sj.onc.1204252
- Tiwari S, Dewry RK, Srivastava R, Nath S, Mohanty TK. Targeted antioxidant delivery modulates mitochondrial functions, ameliorates oxidative stress and preserve sperm quality during cryopreservation. Theriogenology. 2022;179:22-31. https://doi.org/10.1016/j.theriogenology.2021.11.013
- Tonelli C, Chio IIC, Tuveson DA. Transcriptional regulation by Nrf2. Antioxid Redox Signal. 2018;29:1727-45. https://doi.org/10.1089/ars.2017.7342
- Urbani A, Prosdocimi E, Carrer A, Checchetto V, Szabo I. Mitochondrial ion channels of the inner membrane and their regulation in cell death signaling. Front Cell Dev Biol. 2021;8:620081.
- Wu AG, Yong YY, Pan YR, Zhang L, Wu JM, Zhang Y, et al. Targeting Nrf2-mediated oxidative stress response in traumatic brain injury: therapeutic perspectives of phytochemicals. Oxid Med Cell Longev. 2022;2022:1015791.
- Xu W, Zhu H, Hu B, Cheng Y, Guo Y, Yao W, et al. Echinacea in hepatopathy: a review of its phytochemistry, pharmacology, and safety. Phytomedicine. 2021;87:153572.
- Yu LM, Zhang WH, Han XX, Li YY, Lu Y, Pan J, et al. Hypoxia-induced ROS contribute to myoblast pyroptosis during obstructive sleep apnea via the NF-κB/HIF-1α signaling pathway. Oxid Med Cell Longev. 2019;2019:4596368.
- Yu Y, Cui Y, Niedernhofer LJ, Wang Y. Occurrence, biological consequences, and human health relevance of oxidative stress-induced DNA damage. Chem Res Toxicol. 2016;29:2008-39. https://doi.org/10.1021/acs.chemrestox.6b00265
- Yu ZY, Ma D, He ZC, Liu P, Huang J, Fang Q, et al. Heme oxygenase-1 protects bone marrow mesenchymal stem cells from iron overload through decreasing reactive oxygen species and promoting IL-10 generation. Exp Cell Res. 2018;362:28-42. https://doi.org/10.1016/j.yexcr.2017.10.029
- Zhang Q, Liu J, Duan H, Li R, Peng W, Wu C. Activation of Nrf2/HO-1 signaling: an important molecular mechanism of herbal medicine in the treatment of atherosclerosis via the protection of vascular endothelial cells from oxidative stress. J Adv Res. 2021;34:43-63. https://doi.org/10.1016/j.jare.2021.06.023