• Title/Summary/Keyword: human prostate cancer

Search Result 266, Processing Time 0.022 seconds

Aspergillus fumigatus-derived demethoxyfumitremorgin C inhibits proliferation of PC3 human prostate cancer cells through p53/p21-dependent G1 arrest and apoptosis induction

  • Kim, Young-Sang;Park, Sun Joo
    • Fisheries and Aquatic Sciences
    • /
    • v.24 no.1
    • /
    • pp.1-9
    • /
    • 2021
  • Human prostate cancer is the second most frequently diagnosed cancer worldwide, and its incidence rate continues to increase. Advanced prostate cancer is more difficult to treat than early forms due to its chemotherapy resistance. There is need for more effective agents that can inhibit the progression of advanced prostate cancer. Demethoxyfumitremorgin C (DMFTC) was isolated from the fermentation extract of the marine fungus Aspergillus fumigatus. Antiproliferative activity of DMFTC against human prostate cancer PC3 cells was examined through cell cycle analysis by flow cytometry, the fluorescent nuclear imaging analysis with propidium iodide (PI), and proteins expression related to cell cycle arrest and apoptosis were investigated via Western blotting. DMFTC inhibited PC3 cells growth through G1 phase cell cycle arrest and apoptosis induction. It activated the tumor suppressor p53 and the Cdk inhibitor p21, which regulate the cell progression into the G1 phase. Additionally, PI-positive late apoptotic non-viable cells were increased and the expression levels of the G1-positive downstream regulators cyclin D, cyclin E, Cdk2, and Cdk4 were decreased by DMFTC treatment. These results suggest that DMFTC induces G1 arrest and apoptosis induction through regulation of p53/p21-dependent cyclin-Cdk complexes, and it may be a useful therapeutic agent for the treatment of human advanced prostate cancer.

Apoptotic effect of physcion isolated from marine fungus Microsporum sp. in PC3 human prostate cancer cells

  • Ding, Yi-Shan;Kim, Won-Suk;Park, Sun Joo;Kim, Se-Kwon
    • Fisheries and Aquatic Sciences
    • /
    • v.21 no.8
    • /
    • pp.22.1-22.7
    • /
    • 2018
  • Background: Apoptosis is a process of programmed cell death, and apoptosis defect results in serious diseases such as cancer. Apoptosis induction is one of the key mechanisms of anti-cancer agents. This study was aimed to find anti-prostate cancer compounds from marine-derived fungus Microsporum sp. Results: We found that physcion isolated from the fermentation broth extract of the marine fungus Microsporum sp. strain MFS-YL decreases the cell proliferation of PC3 human prostate cancer cells. Physcion induced cell apoptosis as determined by Annexin V/propidium iodide double staining. Physcion downregulated the anti-apopotoic proteins such as Ras, Bcl-xL, and Bcl-2, whereas upregulated the pro-apoptotic Bax. Physcion also activated caspase-3, caspase-8, and caspase-9. Conclusion: These results suggest that physcion from Microsporum sp. inhibits the proliferation of PC3 human prostate cancer cells via the pathway leading to apoptotic cell death. Physcion may be a potential candidate in the field of anticancer drug discovery against human prostate cancer.

Orphan Nuclear Receptor Nurr1 as a Potential Novel Marker for Progression in Human Prostate Cancer

  • Wang, Jian;Yang, Jing;Zou, Ying;Huang, Guo-Liang;He, Zhi-Wei
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.3
    • /
    • pp.2023-2028
    • /
    • 2013
  • A number of studies have indicated that Nurr1, which belongs to a novel class of orphan nuclear receptors (the NR4A family), is important for carcinogenesis. Here we investigated expression of Nurr1 protein in benign and malignant human prostate tissues and association with clinicopathologic features using immunohistochemical techniques. Moreover, we also investigated the ability of Nurr1 to influence proliferation, migration, invasion and apoptosis of human prostate cancer cells using small interfering RNA silencing. Immunohistochemical analysis revealed that the expression of Nurr1 protein was higher in prostate cancer tissues than in benign prostate tissue (P<0.001), levels being positively correlated with tumor T classification (P = 0.003), N classification (P = 0.017), M classification (P = 0.011) and the Gleason score (P = 0.020) of prostate cancer patients. In vitro, silencing of endogenous Nurr1 attenuated cell proliferation, migration and invasion, and induced apoptosis of prostate cancer cells. These results suggest that Nurr1 may be used as an indicator for prostate cancer progression and be useful for novel potential therapeutic strategies.

The Effect of Hwangryunhaedoktang on Proliferations of Various Human Cancer Cells (황련해독탕이 수종의 인간 암세포 증식에 미치는 영향)

  • Sung, Hyun Kyung;Min, Sang Yeon;Kim, Jang Hyun
    • The Journal of Pediatrics of Korean Medicine
    • /
    • v.27 no.1
    • /
    • pp.59-68
    • /
    • 2013
  • Objectives The aim of this study is to investigate whether hwang-ryun-haedok-tang (HDT) affect proliferations of androgen-dependent LNCaP prostate cancer cells, androgen-independent PC-3, DU-145 prostate cancer cells, MCF-7 human breast cancer cells, A549, NCI-H292 human pulmonary cancer cells and K-562 human chronic myelogenous leukemia cells. Materials and Methods Effects of HDT on proliferations of each cancer cell line were investigated. 20,000 cells/well were plated in each well of 96-well culture plate. After 24 hrs, 0.01-10% of HDT in culture medium was added to cancer cells. The number of cells was counted by using SRB assay or direct cell counting method after 72 hours from drug treatment. Effect of baicalein or berebrine on proliferation was assessed according to the same method. Results (1) HDT inhibited proliferations of LNCaP, PC-3 and DU-145 prostate cancer cells. (2) HDT inhibited proliferation of MCF-7 breast cancer cells. (3) HDT also inhibited proliferations of A549, NCI-H292 pulmonary cancer cells and K-562 chronic myelogenous leukemia cells. (4) Baicalein and berberine also showed inhibitory effects on proliferations of prostate and breast cancer cells. Conclusion : HDT inhibited proliferations of human prostate, breast, pulmonary and blood cancer cells. These results suggest us the potential use of HDT as a chemopreventive or chemotherapeutic agent. Effect of HDT on human cancer should be further investigated using in vivo experimental models that can reflect pathophysiology of human cancer through another studies.

Frequency and Type Distribution of Human Papilloma Virus in Patients with Prostate Cancer, Kerman, Southeast of Iran

  • Atashafrooz, Fatemeh;Rokhbakhsh-Zamin, Farokh
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.8
    • /
    • pp.3953-3958
    • /
    • 2016
  • Prostatic cancer is the second cause of cancer-related death among men worldwide. The human papilloma viruses (HPVs) are a family of sexually transmitted viruses which have may have roles in the ethiology of inflammation in prostate leading to benign prostatic hyperplasia (BPH) and prostate cancer (PCa). In this study, we evaluated the frequency of different HPV types in prostatic cancer and benign prostatic hyperplasia (BPH) in Kerman province, southeast of Iran, using real-time PCR techniques. The aim of the present research was to clarify any association with prostatic carcinogenesis. Real Time PCR showed that HPV DNA was found in 20% of 200 PCa samples, 80 percent of these with high-risk HPV types, 40% with type-16,18, 30 % type-31,33 and 10% type 54. High risk HPV DNA was detected in only 2% of BPH samples. Values for low risk types were much higher. Our study provided a support for the role of high risk HPV infection in prostatic disease in Iranian patients, and association between presence of HPV DNA and prostate carcinoma. In particular, HPV 16 and18 might have an important role in prostate cancer.

Human Kallikrein-2, Prostate Specific Antigen and Free-Prostate Specific Antigen in Combination to Discriminate Prostate Cancer from Benign Diseases in Syrian Patients

  • Bachour, Dala-Maria;Chahin, Emil;Al-Fahoum, Sahar
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.16
    • /
    • pp.7085-7088
    • /
    • 2015
  • Background: The high incidence of prostate cancer as the most common malignancy in males in many countries raises the question of developing reliable detection tests. The prostate specific antigen (PSA) test is the most widely used for screening for prostate cancer; however, its low specificity elevates the number of unnecessarily biopsies. Serum human kallikrein-2 (hK2) is considered as a promising marker, and especially its ratio to fPSA, for predicting the presence of malignancy to select the best choice referring to biopsy or surveillance. In this study, we investigated the role of hK2 and its combinations with other markers to discriminate prostate cancer from benign diseases in Syrian patients. Materials and Methods: In this prospective oriented cross-sectional cohort study, serum samples were collected from patients referred to many Hospitals in Damascus, Syria, between May 2011 and March 2012, and diagnosed with biopsy proven benign prostate hyperplasia (BPH) or prostate cancer (PCa). Serum was analyzed for hK2, PSA and fPSA, and the ratios of fPSA/PSA and hK2/fPSA were calculated. Results: We found that mean hK2/fPSA ratios were significantly higher (P=0.01) in prostate cancer patients than in the BPH or control groups. Also the ratio hk2/fPSA gave the largest area under the curve (AUC:0.96) which was significantly larger than for fPSA/PSA (AUC:0.41) indicative of higher specificity. Conclusions: Our results demonstrate that the ratio of hK2/fPSA might be superior to the use of fPSA/PSA alone. The hK2 could be shown to enhance the early detection of prostate cancer; especially the ratio hK2/fPSA improves specificity and hence may reduce the number of negative biopsies.

Screening and Characterization of a Novel RNA Aptamer That Specifically Binds to Human Prostatic Acid Phosphatase and Human Prostate Cancer Cells

  • Kong, Hoon Young;Byun, Jonghoe
    • Molecules and Cells
    • /
    • v.38 no.2
    • /
    • pp.171-179
    • /
    • 2015
  • Prostatic acid phosphatase (PAP) expression increases proportionally with prostate cancer progression, making it useful in prognosticating intermediate to high-risk prostate cancers. A novel ligand that can specifically bind to PAP would be very helpful for guiding prostate cancer therapy. RNA aptamers bind to target molecules with high specificity and have key advantages such as low immunogenicity and easy synthesis. Here, human PAP-specific aptamers were screened from a 2'-fluoropyrimidine (FY)-modified RNA library by SELEX. The candidate aptamer families were identified within six rounds followed by analysis of their sequences and PAP-specific binding. A gel shift assay was used to identify PAP binding aptamers and the 6N aptamer specifically bound to PAP with a Kd value of 118 nM. RT-PCR and fluorescence labeling analyses revealed that the 6N aptamer bound to PAP-positive mammalian cells, such as PC-3 and LNCaP. IMR-90 negative control cells did not bind the 6N aptamer. Systematic minimization analyses revealed that 50 nucleotide sequences and their two hairpin structures in the 6N 2'-FY RNA aptamer were equally important for PAP binding. Renewed interest in PAP combined with the versatility of RNA aptamers, including conjugation of anti-cancer drugs and nano-imaging probes, could open up a new route for early theragnosis of prostate cancer.

Emerging Roles of Human Prostatic Acid Phosphatase

  • Kong, Hoon Young;Byun, Jonghoe
    • Biomolecules & Therapeutics
    • /
    • v.21 no.1
    • /
    • pp.10-20
    • /
    • 2013
  • Prostate cancer is one of the most prevalent non-skin related cancers. It is the second leading cause of cancer deaths among males in most Western countries. If prostate cancer is diagnosed in its early stages, there is a higher probability that it will be completely cured. Prostatic acid phosphatase (PAP) is a non-specific phosphomonoesterase synthesized in prostate epithelial cells and its level proportionally increases with prostate cancer progression. PAP was the biochemical diagnostic mainstay for prostate cancer until the introduction of prostate-specific antigen (PSA) which improved the detection of early-stage prostate cancer and largely displaced PAP. Recently, however, there is a renewed interest in PAP because of its usefulness in prognosticating intermediate to high-risk prostate cancers and its success in the immunotherapy of prostate cancer. Although PAP is believed to be a key regulator of prostate cell growth, its exact role in normal prostate as well as detailed molecular mechanism of PAP regulation is still unclear. Here, many different aspects of PAP in prostate cancer are revisited and its emerging roles in other environment are discussed.

MicroRNA-497 Suppresses Proliferation and Induces Apoptosis in Prostate Cancer Cells

  • Wang, Li;Li, Bo;Li, Lei;Wang, Te
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.6
    • /
    • pp.3499-3502
    • /
    • 2013
  • MicroRNAs (miRNAs) are a class of endogenously expressed small, non-coding, single-stranded RNAs that negatively regulate gene expression, mainly by binding to 3'- untranslated regions (3'UTR) of their target messenger RNAs (mRNAs), which cause blocks of translation and/or mRNA cleavage. Recently, miRNAprofiling studies demonstrated the microRNA-497 (miR-497) level to be down-regulated in all prostate carcinomas compared with BPH samples. The purpose of this study was to investigate the potential role of miR-497 in human prostate cancer. Proliferation, cell cycle and apoptosis assays were conducted to explore the potential function of miR-497 in human prostate cancer cells. Results showed that miR-497 suppressed cellular growth and initiated G0/G1 phase arrest of LNCaP and PC-3 cells. We also observed that miR-497 increased the percentage of apoptotic cells by increasing caspase-3/7 activity. Taken together, our results demonstrated that miR-497 can inhibit growth and induce apoptosis by caspase-3 activation in prostate cancer cells, which suggest its use as a potential therapeutic target in the future.

Inhibitory Effect of 4-Aryl 2-Substituted Aniline-thiazole Analogs on Growth of Human Prostate Cancer LNCap Cells

  • Baek, Seung-Hwa;Kim, Nak-Jeong;Kim, Seong-Hwan;Park, Kwang-Hwa;Jeong, Kyung-Chae;Park, Bae-Keun;Kang, Nam-Sook
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.1
    • /
    • pp.111-114
    • /
    • 2012
  • Androgen receptor (AR) is ligand-inducible nuclear hormone receptor which has been focused on key molecular target in growth and progression of prostate cancer. We synthesized a series of 4-aryl 2-substituted aniline-thiazole analogs and evaluated their anti-cancer activity in AR-dependent human prostate cancer LNCap cells. Among them, the compound 6 inhibited the tumor growth in LNCap-inoculated xenograft model.