DOI QR코드

DOI QR Code

Screening and Characterization of a Novel RNA Aptamer That Specifically Binds to Human Prostatic Acid Phosphatase and Human Prostate Cancer Cells

  • Received : 2014.10.11
  • Accepted : 2014.11.10
  • Published : 2015.02.28

Abstract

Prostatic acid phosphatase (PAP) expression increases proportionally with prostate cancer progression, making it useful in prognosticating intermediate to high-risk prostate cancers. A novel ligand that can specifically bind to PAP would be very helpful for guiding prostate cancer therapy. RNA aptamers bind to target molecules with high specificity and have key advantages such as low immunogenicity and easy synthesis. Here, human PAP-specific aptamers were screened from a 2'-fluoropyrimidine (FY)-modified RNA library by SELEX. The candidate aptamer families were identified within six rounds followed by analysis of their sequences and PAP-specific binding. A gel shift assay was used to identify PAP binding aptamers and the 6N aptamer specifically bound to PAP with a Kd value of 118 nM. RT-PCR and fluorescence labeling analyses revealed that the 6N aptamer bound to PAP-positive mammalian cells, such as PC-3 and LNCaP. IMR-90 negative control cells did not bind the 6N aptamer. Systematic minimization analyses revealed that 50 nucleotide sequences and their two hairpin structures in the 6N 2'-FY RNA aptamer were equally important for PAP binding. Renewed interest in PAP combined with the versatility of RNA aptamers, including conjugation of anti-cancer drugs and nano-imaging probes, could open up a new route for early theragnosis of prostate cancer.

Keywords

References

  1. Azumi, N., Traweek, S.T., and Battifora, H. (1991). Prostatic acid phosphatase in carcinoid tumors. Immunohistochemical and immunoblot studies. Am. J. Surg. Pathol. 15, 785-790. https://doi.org/10.1097/00000478-199108000-00009
  2. Bompiani, K.M., Woodruff, R.S., Becker, R.C., Nimjee, S.M., and Sullenger, BA. (2012). Antidote control of aptamer therapeutics: the road to a safer class of drug agents. Curr. Pharm. Biotechnol. 13, 1924-1934. https://doi.org/10.2174/138920112802273137
  3. Bruno, J.G., Carrillo, M.P., Phillips, T., Vail, N.K., and Hanson, D. (2008). Competitive FRET-aptamer-based detection of methylphosphonic acid, a common nerve agent metabolite. J. Fluoresc. 18, 867-876. https://doi.org/10.1007/s10895-008-0316-3
  4. Cary, K.C., and Cooperberg, M.R. (2013). Biomarkers in prostate cancer surveillance and screening : past, present, and future. Ther. Adv. Urol. 5, 318-329. https://doi.org/10.1177/1756287213495915
  5. Chen, F., Hu, Y., Li, D., Chen, H., and Zhang, X.L. (2009) CSSELEX generates high-affinity ssDNA aptamers as molecular probes for hepatitis C virus envelope glycoprotein E2. PLoS One 4, e8142. https://doi.org/10.1371/journal.pone.0008142
  6. Chuang, T.D., Chen, S.J., Lin, F.F., Veeramani, S., Kumar, S., Batra, S.K., Tu, Y., and Lin, M.F. (2010). Human prostatic acid phosphatase, an authentic tyrosine phosphatase, dephosphorylates ErbB-2 and regulates prostate cancer cell growth. J. Biol. Chem. 285, 23598-23606. https://doi.org/10.1074/jbc.M109.098301
  7. Ellington, A.D., and Szostak, J.W. (1990). In vitro selection of RNA molecules that bind specific ligands. Nature 346, 818-822. https://doi.org/10.1038/346818a0
  8. Eyetech Study Group. (2002). Preclinical and phase 1A clinical evaluation of an anti-VEGF pegylated aptamer (EYE001) for the treatment of exudative age-related macular degeneration. Retina 22, 143-152. https://doi.org/10.1097/00006982-200204000-00002
  9. Fang, L.C., Dattoli, M., Taira, A., True, L., Sorace, R., and Wallner, K. (2008) Prostatic acid phosphatase adversely affects causespecific survival in patients with intermediate to high-risk prostate cancer treated with brachytherapy. Urology 71, 146-150. https://doi.org/10.1016/j.urology.2007.08.024
  10. Foy, J.W., Rittenhouse, K., Modi, M., and Patel, M. (2007). Local tolerance and systemic safety of pegaptanib sodium in the dog and rabbit. J. Ocul. Pharmacol. Ther. 23, 452-466. https://doi.org/10.1089/jop.2006.0149
  11. Gerritsen, W.R. (2012). The evolving role of immunotherapy in prostate cancer. Ann. Oncol. 23, Suppl 8:viii22-27. https://doi.org/10.1093/annonc/mds443
  12. Gopinath, S.C. (2007). Methods developed for SELEX. Analytical and bioanalytical chemistry 387, 171-182.
  13. Greene, K.L., Albertsen, P.C., Babaian, R.J., Carter, H.B., Gann, P.H., Han, M., Kuban, D.A., Sartor, A.O., Stanford, J.L., Zietman, A., et al. (2013). Prostate specific antigen best practice statement: 2009 update. J. Urol. 189 (1 Suppl), S2-S11. https://doi.org/10.1016/j.juro.2012.11.014
  14. Gunia, S., Koch, S., May, M., Dietel, M., and Erbersdobler, A. (2009). Expression of prostatic acid phosphatase (PSAP) in transurethral resection specimens of the prostate is predictive of histopathologic tumor stage in subsequent radical prostatectomies. Virchows. Arch. 454, 573-579. https://doi.org/10.1007/s00428-009-0759-1
  15. Hamula, C.L., Le, X.C., and Li, X.F. (2011). DNA aptamers binding to multiple prevalent M-types of Streptococcus pyogenes. Anal. Chem. 83, 3640-3647. https://doi.org/10.1021/ac200575e
  16. Hassan, M.I., Aijaz, A., and Ahmad, F. (2010). Structural and functional analysis of human prostatic acid phosphatase. Expert Rev. Anticancer Ther. 10, 1055-1068. https://doi.org/10.1586/era.10.46
  17. Hong, H., Goel, S., Zhang, Y., and Cai, W. (2011). Molecular imaging with nucleic acid aptamers. Curr. Med. Chem. 18, 4195-4205. https://doi.org/10.2174/092986711797189691
  18. Jayasena, S.D. (1999). Aptamers: an emerging class of molecules that rival antibodies in diagnostics. Clin. Chem. 45, 1628-1650.
  19. Kawakami, J., Imanaka, H., Yokota, Y., and Sugimoto, N. (2000). In vitro selection of aptamers that act with $Zn^{2+}$. J. Inorg. Biochem. 82, 197-206. https://doi.org/10.1016/S0162-0134(00)00158-6
  20. Kong, H.Y., and Byun, J. (2013). Emerging roles of human prostatic acid phosphatase. Biomol. Ther. 21, 10-20. https://doi.org/10.4062/biomolther.2012.095
  21. Lin, M.F., Meng, T.C., Rao, P.S., Chang, C., Schonthal, A.H., and Lin, F.F. (1998). Expression of human prostatic acid phosphatase correlates with androgen-stimulated cell proliferation in prostate cancer cell lines. J. Biol. Chem. 273, 5939-5947. https://doi.org/10.1074/jbc.273.10.5939
  22. Lin, M.F., Lee, M.S., Zhou, X.W., Andressen, J.C., Meng, T.C., Johansson, S.L., West, W.W., Taylor, R.J., Anderson, J.R., and Lin, F.F. (2001). Decreased expression of cellular prostatic acid phosphatase increases tumorigenicity of human prostate cancer cells. J. Urol. 166, 1943-1950. https://doi.org/10.1016/S0022-5347(05)65725-4
  23. Liu, Z., Duan, J.H., Song, Y.M., Ma, J., Wang, F.D., Lu, X., and Yang, X.D. (2012). Novel HER2 aptamer selectively delivers cytotoxic drug to HER2-positive breast cancer cells in vitro. J. Transl. Med. 10:148. https://doi.org/10.1186/1479-5876-10-148
  24. Lubaroff, D.M. (2012). Prostate cancer vaccines in clinical trials. Expert Rev. Vaccines 11, 857-868. https://doi.org/10.1586/erv.12.54
  25. Madu, C.O., and Lu, Y. (2010). Novel diagnostic biomarkers for prostate cancer. J. Cancer 1, 150-177.
  26. McNeel, D.G., Dunphy, E.J., Davies, J.G., Frye, T.P., Johnson, L.E., Staab, M.J., Horvath, D.L., Straus, J., Alberti, D., Marnocha, R., et al. (2009). Safety and immunological efficacy of a DNA vaccine encoding prostatic acid phosphatase in patients with stage D0 prostate cancer. J. Clin. Oncol. 27, 4047-4054. https://doi.org/10.1200/JCO.2008.19.9968
  27. Meng, L., Yang, L., Zhao, X., Zhang, L., Zhu, H., Liu, C., and Tan, W. (2012). Targeted delivery of chemotherapy agents using a liver cancer-specific aptamer. PLoS One 7, e33434. https://doi.org/10.1371/journal.pone.0033434
  28. Mosing, R.K., Mendonsa, S.D., and Bowser, M.T. (2005). Capillary electrophoresis-SELEX selection of aptamers with affinity for HIV-1 reverse transcriptase. Anal. Chem. 77, 6107-6112. https://doi.org/10.1021/ac050836q
  29. Oesterling, J.E., Suman, V.J., Zincke, H., and Bostwick, D.G. (1993). PSA-detected (clinical stage T1c or B0) prostate cancer. Pathologically significant tumors. Urol. Clin. North Am. 20, 687-693.
  30. Ray, P., and White, R.R. (2010). Aptamers for targeted drug delivery. Pharmaceuticals 3, 1761-1778. https://doi.org/10.3390/ph3061761
  31. Reiter, R.J., Tan, D.X., Manchester, L.C., Korkmaz, A., Fuentes- Broto, L., Hardman, W.E., Rosales-Corral, S.A., and Qi, W. (2013). A walnut-enriched diet reduces the growth of LNCaP human prostate cancer xenografts in nude mice. Cancer Invest. 31, 365-373. https://doi.org/10.3109/07357907.2013.800095
  32. Rockey, W.M., Huang, L., Kloepping, K.C., Baumhover, N.J., Giangrande, P.H., and Schultz, M.K. (2011). Synthesis and radiolabeling of chelator-RNA aptamer bioconjugates with copper- 64 for targeted molecular imaging. Bioorg. Med. Chem. 19, 4080-4090. https://doi.org/10.1016/j.bmc.2011.05.010
  33. Ruckman, J., Green, L.S., Beeson, J., Waugh, S., Gillette, W.L., Henninger, D.D., Claesson-Welsh, L., and Janjic, N. (1998). 2'- Fluoropyrimidine RNA-based aptamers to the 165-amino acid form of vascular endothelial growth factor (VEGF165). Inhibition of receptor binding and VEGF-induced vascular permeability through interactions requiring the exon 7-encoded domain. J. Biol. Chem. 273, 20556-20567. https://doi.org/10.1074/jbc.273.32.20556
  34. Savla, R., Taratula, O., Garbuzenko, O., and Minko, T. (2011). Tumor targeted quantum dot-mucin 1 aptamer-doxorubicin conjugate for imaging and treatment of cancer. J. Control. Release 153, 16-22. https://doi.org/10.1016/j.jconrel.2011.02.015
  35. Sims, R.B. (2012). Development of sipuleucel-T: autologous cellular immunotherapy for the treatment of metastatic castrate resistant prostate cancer. Vaccine 30, 4394-4397. https://doi.org/10.1016/j.vaccine.2011.11.058
  36. Soares, N.D., Teodoro, A.J., Oliveira, F.L., Santos, C.A., Takiya, C.M., Junior, O.S., Bianco, M., Junior, A.P., Nasciutti, L.E., Ferreira, L.B., et al. (2013). Influence of lycopene on cell viability, cell cycle, and apoptosis of human prostate cancer and benign hyperplastic cells. Nutr. Cancer 65, 1076-1085. https://doi.org/10.1080/01635581.2013.812225
  37. Song, Y., Zhu, Z., An, Y., Zhang, W., Zhang, H., Liu, D., Yu, C., Duan, W., and Yang, C.J. (2013). Selection of DNA aptamers against epithelial cell adhesion molecule for cancer cell imaging and circulating tumor cell capture. Anal. Chem. 85, 4141-4149. https://doi.org/10.1021/ac400366b
  38. Subramanian, N., Raghunathan, V., Kanwar, J.R., Kanwar, R.K., Elchuri, S.V., Khetan, V., and Krishnakumar, S. (2012). Targetspecific delivery of doxorubicin to retinoblastoma using epithelial cell adhesion molecule aptamer. Mol. Vis. 18, 2783-2795.
  39. Taira, A., Merrick, G., Wallner, K., and Dattoli, M. (2007). Reviving the acid phosphatase test for prostate cancer. Oncology 21, 1003-1010.
  40. Talbot, L.J., Mi, Z., Bhattacharya, S.D., Kim, V., Guo, H., and Kuo, P.C. (2011). Pharmacokinetic characterization of an RNA aptamer against osteopontin and demonstration of in vivo efficacy in reversing growth of human breast cancer cells. Surgery 150, 224-230. https://doi.org/10.1016/j.surg.2011.05.015
  41. Tang, Z., Parekh, P., Turner, P., Moyer, R.W., and Tan, W. (2009). Generating aptamers for recognition of virus-infected cells. Clin. Chem. 55, 813-822. https://doi.org/10.1373/clinchem.2008.113514
  42. Thompson, I.M., Pauler, D.K., Goodman, P.J., Tangen, C.M., Lucia, M.S., Parnes, H.L., Minasian, L.M., Ford, L.G., Lippman, S.M., Crawford, E.D., et al. (2004). Prevalence of prostate cancer among men with a prostate-specific antigen level < or =4.0 ng per milliliter. N. Engl. J. Med. 350, 2239-2246. https://doi.org/10.1056/NEJMoa031918
  43. Tuerk, C., and Gold, L. (1990). Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249, 505-510. https://doi.org/10.1126/science.2200121
  44. Wallace, D.M., Chisholm, G.D., and Hendry, W.F. (1975). T.N.M. classification for urological tumours (U.I.C.C.) - 1974. Br. J. Urol. 47, 1-12. https://doi.org/10.1111/j.1464-410X.1975.tb03911.x
  45. Walter, L.C., Bertenthal, D., Lindquist, K., and Konety, B.R. (2006). PSA screening among elderly men with limited life expectancies. JAMA 296, 2336-2342. https://doi.org/10.1001/jama.296.19.2336
  46. Wang, Y., Harada, M., Yano, H., Ogasawara, S., Takedatsu, H., Arima, Y., Matsueda, S., Yamada, A., and Itoh, K. (2005). Prostatic acid phosphatase as a target molecule in specific immunotherapy for patients with nonprostate adenocarcinoma. J. Immunother. 28, 535-541. https://doi.org/10.1097/01.cji.0000175490.26937.22
  47. Whitesel, J.A., Donohue, R.E., Mani, J.H., Mohr, S., Scanavino, D.J., Augspurger, R.R., Biber, R.J., Fauver, H.E., Wettlaufer, J.N., and Pfister, R.R. (1984). Acid phosphatase: its influence on the management of carcinoma of the prostate. J. Urol. 131, 70-72. https://doi.org/10.1016/S0022-5347(17)50207-4
  48. Zhang, Y., Hong, H., and Cai, W. (2011). Tumor-targeted drug delivery with aptamers. Curr. Med. Chem. 18, 4185-4194. https://doi.org/10.2174/092986711797189547
  49. Zhang, M.Z., Yu, R.N., Chen, J., Ma, Z.Y., and Zhao, Y.D. (2012). Targeted quantum dots fluorescence probes functionalized with aptamer and peptide for transferrin receptor on tumor cells. Nanotechnology 23, 485104. https://doi.org/10.1088/0957-4484/23/48/485104
  50. Zhu, G., Ye, M., Donovan, M.J., Song, E., Zhao, Z., and Tan, W. (2012). Nucleic acid aptamers: an emerging frontier in cancer therapy. Chem. Commun. 48, 10472-10480. https://doi.org/10.1039/c2cc35042d
  51. Zimmermann, H. (2009). Prostatic acid phosphatase, a neglected ectonucleotidase. Purinergic Signal 5, 273-275. https://doi.org/10.1007/s11302-009-9157-z
  52. Zuker, M. (2003). Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 31, 3406-3415. https://doi.org/10.1093/nar/gkg595

Cited by

  1. Novel delivery approaches for cancer therapeutics vol.219, 2015, https://doi.org/10.1016/j.jconrel.2015.09.067
  2. Chemical methods for the modification of RNA vol.161, pp.None, 2019, https://doi.org/10.1016/j.ymeth.2019.03.018
  3. HOXC6 in the prognosis of prostate cancer vol.47, pp.1, 2019, https://doi.org/10.1080/21691401.2019.1635136
  4. Recent Progress and Opportunities for Nucleic Acid Aptamers vol.11, pp.3, 2021, https://doi.org/10.3390/life11030193