• Title/Summary/Keyword: human pressure

Search Result 1,117, Processing Time 0.027 seconds

Subjective Wearing Assessment and Clothing Pressure depending on the Pattern Reduction Rate of Developed Cycle Pants Using the 3D Human Scan Data (3D 스캔 데이터를 이용하여 개발된 사이클 팬츠 패턴의 축소율에 따른 의복압 및 주관적 착의 평가)

  • Jeong, Yeonhee;Hong, Kyunghi
    • Korean Journal of Human Ecology
    • /
    • v.24 no.2
    • /
    • pp.255-266
    • /
    • 2015
  • In this study, we have developed the ergonomic pattern from the 3D human body reflecting cycling posture and extensibility of the stretch fabrics. Adjusting pressure level in the construction of athlete's tight-fitting stretch garments by reducing the original pattern is a challenging subject, which influence on the performance of the wearer directly. Therefore, in this study, relationships between the reduction rates of the 2D pattern obtained from the 3D human scan and resultant clothing pressure were explored to improve the fit and pressure exerted by reduced clothing pattern. Subjective wear sensations of the experimental garments were rated using a seven-point Likert scale on two consecutive days. While wearing the garments, subjects were asked to take five different postures including waist flexion, sitting and others. A Likert-type scale was used for the evaluation, with 7 points indicating the best fit in tight-fitting pants. Comparing 2/3T-pattern with T-pattern, the latter was superior to 2/3T-pattern in terms of adhere well to the waist and hip area in the 0.032 significance level. T-pattern was superior to 2/3T-pattern in terms of fitting and wear comfort. As results, the pattern obtained from the flexed body reflecting cycling posture already included the contraction and extension of the skin while cycling posture, so that the extra ease for movement and good fit was not need to be considered. The optimized reduction rates were determined with the proposed reduction rate, the resultant pressure range was within the range of $0.5{\sim}3.0gf/cm^2$ at eight locations on the body except front waist band and thigh band.

Multi-Point Radial Artery Pulse Wave Transducer using Pneumatic System (공압 방식에 의한 다지점 요골 맥파 검출 장치)

  • 이종진;정민석;황성하;이종현;이선규
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.243-248
    • /
    • 2001
  • A radial artery pulse wave is well known as a good mans to diagnose human body condition in th field of Chinese medical science. Information about constitution as well as organs can be obtained by detecting the artery pulse wave. Recently, the information about the human body constitution may be utilized in accelerating the recovery process of the patient on the basis of comprehensive diagnosis. A radial artery pulse wave is considered as one of promising means in examining the human body constitution. Since the examination has been conducted by the feeling of finger, the diagnosis may occasionally have uncertainty or fatal error. In this paper, a new measuring system is suggested and developed to examine the pattern of a pulse wave correctly. The system is composed of four pressure vessels, pressure sensors and air supplying pumps. One of them is utilized for appropriately pressing the radial artery, three of them for detecting pressure change in several mmHg level. The detected data is shown and discussed.

  • PDF

A Study on Materialism of University Students (대학생의 물질주의 가치관에 대한 연구)

  • Song, Soon;Shin, Hyoun-Shill
    • Korean Journal of Human Ecology
    • /
    • v.11 no.3
    • /
    • pp.223-235
    • /
    • 2002
  • The purpose of this study was to examine the influences of the materialism of university students. The data were collected for 331 university students. The data were analyzed by the package of SPSS program. The methods of analyses included basic descriptive categorical analysis (frequencies, means, percentages) as well as t-test, one way ANOVA, and multiple regressions. To summarize major findings from the analysis: (1) A significant difference was found in the materialism of university students by the socio-economic variables such as the amount of pocket money. (2) A significant difference was found in the materialism of university students by more self-esteem than life satisfaction. (3) A significant difference was found in the materialism of university students by parent's materialism and competitive achievement pressure. (4) According to the multiple regression analysis, it was found that the materialism of university students was influenced by the order of self-esteem, parent's materialism and competitive achievement pressure.

  • PDF

Automatic Blood Pressure Control Using PI Controller with $H_{\infty}$ Loop-Shaping

  • Han, Jeong-Yup;Lee, Sang-Kyung;Park, Hong-Bae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.326-329
    • /
    • 2004
  • In this paper, we show a new form of blood pressure controller combined PI control with $H_{\infty}$ loop-shaping. Hypertensive patients or post-operative patients need to maintain normally blood pressure. Exact regulation of blood pressure is needed for maintaining variable blood pressure of preventing complications. The regulation of blood pressure is achieved by injecting drugs, and usually sodium nitroprusside is used as those kinds of drugs. It is necessary to control the infusion rate sodium-nitroprusside carefully to achieve the desired blood pressure. It has been known that regulation of blood pressure by automatic controller is more effective than regulation of blood pressure by human operators. The control of blood pressure has many constraints and uncertainties. Most of biological system has the time-varying variables and the side effects such as increased risk of sepsis and organ failure. To solve such a problem, we design a new robust PI controller using $H_{\infty}$ loop-shaping to decrease noise effects that come out from human body and errors for time delay. The system with designed controller shows more stable control of mean blood pressure and more robust performance for uncertainties. Validation methods for the control performance are confirmed to computer simulations.

  • PDF

Development and Application of Measurement System for Clothing Pressure (인체의복압 환경개선을 위한 의복압 측정 System 개발에 관한 연구)

  • Song, Kyung-Hern;Kim, Jeong-Hwa;Park, Sung-Ha
    • Korean Journal of Human Ecology
    • /
    • v.11 no.3
    • /
    • pp.307-319
    • /
    • 2002
  • We studied on the development of clothing pressure measurement system for wear comfort of foundations(girdle, brassiere, all-in-one). Measurements of clothing pressure were made on subjects wearing girdles, brassieres, all-in-ones of several type(material, size) using by CPMS(clothing pressure measurement system: Tech-Storm. Co). Wearing experiments have been carried out using nine women in the twenties and six women in the forties. The results obtained are as follows: 1. The clothing pressure applied by girdle was higher in the hard type than the soft type by $5-10gf/cm^2$, also recorded a high clothing pressure at points of waist band line and thigh lateral. 2. Clothing pressure of brassiere with wire was high at the point of underbust line and shoulder strap. Pressure for 40s showed higher than 20s by $6-7gf/cm^2$. 3. The pressures of abdominal part applied by both of girdle and all-in-one were much greater than those of girdle or all-in-one. 4. We demonstrated the adaptability and conformity of the CPMS by inquiring into the clothing pressure of various foundations.

  • PDF

Flexible Pressure Sensors Based on Three-dimensional Structure for High Sensitivity

  • Jung, Young;Cho, Hanchul
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.3
    • /
    • pp.145-150
    • /
    • 2022
  • The importance of flexible polymer-based pressure sensors is growing in fields like healthcare monitoring, tactile recognition, gesture recognition, human-machine interface, and robot skin. In particular, health monitoring and tactile devices require high sensor sensitivity. Researchers have worked on sensor material and structure to achieve high sensitivity. A simple and effective method has been to employ three-dimensional pressure sensors. Three-dimensional (3D) structures dramatically increase sensor sensitivity by achieving larger local deformations for the same pressure. In this paper, the performance, manufacturing method, material, and structure of high-sensitivity flexible pressure sensors based on 3D structures, are reviewed.

Systolic blood pressure measurement algorithm with mmWave radar sensor

  • Shi, JingYao;Lee, KangYoon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.4
    • /
    • pp.1209-1223
    • /
    • 2022
  • Blood pressure is one of the key physiological parameters for determining human health, and can prove whether human cardiovascular function is healthy or not. In general, what we call blood pressure refers to arterial blood pressure. Blood pressure fluctuates greatly and, due to the influence of various factors, even varies with each heartbeat. Therefore, achievement of continuous blood pressure measurement is particularly important for more accurate diagnosis. It is difficult to achieve long-term continuous blood pressure monitoring with traditional measurement methods due to the continuous wear of measuring instruments. On the other hand, radar technology is not easily affected by environmental factors and is capable of strong penetration. In this study, by using machine learning, tried to develop a linear blood pressure prediction model using data from a public database. The radar sensor evaluates the measured object, obtains the pulse waveform data, calculates the pulse transmission time, and obtains the blood pressure data through linear model regression analysis. Confirm its availability to facilitate follow-up research, such as integrating other sensors, collecting temperature, heartbeat, respiratory pulse and other data, and seeking medical treatment in time in case of abnormalities.

Delphi Study for Developing Consensus of Physical Attribute in Pressure Pulse Waveform (맥상파 물리량 속성 총의형성을 위한 델파이 연구)

  • Lee, Haebeom;Kim, Hyunho;Park, Young-Jae;Park, Young-Bae
    • The Journal of the Society of Korean Medicine Diagnostics
    • /
    • v.18 no.3
    • /
    • pp.137-148
    • /
    • 2014
  • Objectives This study was conducted to derive consensus about physical attributes in pressure pulse waveform and pulse conditions by Delphi study. Methods Delphi research was conducted for 2 rounds via e-mail. 8 Professors who lecture on a diagnostics of K. M. from the society of Korean medicine diagnostics were participated in this survey. They were asked for answering about series of definition for a physical attribute in pressure pulse waveform and combination for physical attributes of pulse conditions. Results 4 survey items were decided to have high validity and 9 survey items were decided to come to consensus about a physical attribute in pressure pulse waveform. 6 pulse condition were decided to come to consensus. Conclusion Using Delphi method, physical attributes in pressure pulse waveform and combinations of physical attribute in pulse condition come to consensus.

Development of the Pulsatile Pump System for a Perfusion Bioreactor (관류형 바이오리액터를 위한 박동 펌프 시스템 개발)

  • Kim, Hak-Jun;Kim, Sun-Hong;Chung, Ho-Yun;Yun, Won-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.4
    • /
    • pp.526-533
    • /
    • 2011
  • This research is about the pulsatile pump system utilized in the perfusion bioreactor for the in vitro human tissue culture. A pulsatile pump system which can be applied to the culture of the vascular tissues including blood vessel is developed by using the idea of human heart's blood pumping into organs as followings: culture chamber, a pressurizing device which generates laminar pulsatile flow by controlling the x-sectional area of the culture media delivering tubing, a compliance chamber which supplies the pressuring device with a constant pressure, and a peristaltic pump which circulates the culture media in a circuit ranging from the culture chamber to the compliance chamber. The developed pulsatile pump system shows that a physiology of the human heart's blood pumping including pulsatile pressure waveform of systolic-diastolic pressure is well represented. Not only time domain but also frequency domain characteristics of pulsatile pump system which are necessary for the vascular tissue culture such as pulsatile pressure waveform's shape, the frequency, and the magnitude can be easily generated and manipulated by using the proposed system.

Adaptive Pressure Sensor with High Sensitivity and Large Bandwidth Based on Gallium Microdroplet-elastomer Composite (갈륨 미세입자 탄성 복합체 기반 고민감도와 광대역폭을 갖는 가변 강성 압력센서)

  • Simok, Lee;Sang-Hyuk, Byun;Steve, Park;Joo Yong, Sim;Jae-Woong, Jeong
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.6
    • /
    • pp.423-427
    • /
    • 2022
  • A pressure sensor that mimics the sensing ability of human skin has emerged as high-profile technology because it shows remarkable applications in numerous fields such as robotics, human health monitoring, and artificial prosthetics. Whereas recent pressure sensors have achieved high sensitivity similar to that of human skin, they still show limited detection bandwidth. Moreover, once these e-skin are fabricated, their sensitivity and stiffness are fixed; therefore, they can be used for only limited applications. Our study proposes a new adaptive pressure sensor built with uniform gallium microdroplet-elastomer composite. Based on the phase transition of gallium microdroplets, the proposed sensor undergoes mode transformation, enabling it to have a higher sensitivity and wider detection bandwidth compared with those of human skin. In addition, we succeeded in extending a single adaptive pressure sensor to sensor arrays based on its high uniformity, reproducibility, and large-scale manufacturability. Finally, we designed an adaptive e-skin with the sensor array and demonstrated its applications on health monitoring tasks including blood pulse and body weight measurements.