DOI QR코드

DOI QR Code

Flexible Pressure Sensors Based on Three-dimensional Structure for High Sensitivity

  • Jung, Young (Department of Mechanical Engineering Korean Advanced Institute of Science and Technology (KAIST)) ;
  • Cho, Hanchul (Precision Mechanical Process and Control R&D Group Korea Institute of Industrial Technology (KITECH))
  • Received : 2022.04.29
  • Accepted : 2022.05.27
  • Published : 2022.05.31

Abstract

The importance of flexible polymer-based pressure sensors is growing in fields like healthcare monitoring, tactile recognition, gesture recognition, human-machine interface, and robot skin. In particular, health monitoring and tactile devices require high sensor sensitivity. Researchers have worked on sensor material and structure to achieve high sensitivity. A simple and effective method has been to employ three-dimensional pressure sensors. Three-dimensional (3D) structures dramatically increase sensor sensitivity by achieving larger local deformations for the same pressure. In this paper, the performance, manufacturing method, material, and structure of high-sensitivity flexible pressure sensors based on 3D structures, are reviewed.

Keywords

Acknowledgement

This research was supported by the National Research Foundation of Korea (NRF) funded by the Ministry of Education (Nos. 2019R1C1C1010730, 2021R1I1A1A01051208).

References

  1. X. Wang, L. Dong, H. Zhang, R. Yu, C. Pan, and Z. L. Wang, "Recent Progress in Electronic Skin", Adv. Sci. (Weinh), Vol. 2, No. 10, pp. 1500169(1)-1500169(22), 2015. https://doi.org/10.1002/advs.201500169
  2. A. Chortos, J. Liu, and Z. Bao, "Pursuing prosthetic electronic skin", Nat. Mater., Vol. 15, No. 9, pp. 937-950, 2016. https://doi.org/10.1038/nmat4671
  3. K. Kim, J. Choi, Y. Jeong, I. Cho, M. Kim, S. Kim, Y. Oh, and I. Park, "Highly Sensitive and Wearable Liquid MetalBased Pressure Sensor for Health Monitoring Applications: Integration of a 3D-Printed Microbump Array with the Microchannel", Adv. Healthc. Mater., Vol. 8, No. 22, pp. e1900978(1)-e1900978(10), 2019.
  4. W. Honda, S. Harada, T. Arie, S. Akita, and K. Takei, "Wearable, Human-Interactive, Health-Monitoring, Wireless Devices Fabricated by Macroscale Printing Techniques", Adv. Funct. Mater., Vol. 24, No. 22, pp. 3299-3304, 2014. https://doi.org/10.1002/adfm.201303874
  5. T. Gong, H. Zhang, W. Huang, L. Mao, Y. Ke, M. Gao, and B. Yu, "Highly responsive flexible strain sensor using polystyrene nanoparticle doped reduced graphene oxide for human health monitoring", Carbon, Vol. 140, pp. 286-295, 2018. https://doi.org/10.1016/j.carbon.2018.09.007
  6. H. H. Lee, J. H. Choi, J. I. Ahn, C. S. Kim, and J. K. Shin, "A Simple Capacitive Sensor Array Based on a Metal-Insulator-Metal Structure", J. Sens. Sci. Technol., Vol. 21, No. 2, pp. 83-89, 2012. https://doi.org/10.5369/JSST.2012.21.2.83
  7. Y. E. Kwon, Y. Y. Kim, Y. G. Lee, D. K. Lee, O. W. Kwon, S. W. Kang, and K. H. Lee, "Body Pressure Distribution and Textile Surface Deformation Measurement for Quantification of Automotive Seat Design Attributes", J. Sens. Sci. Technol., Vol. 27, No. 6, pp. 397-402, 2018. https://doi.org/10.5369/JSST.2018.27.6.397
  8. Y. Zang, F. Zhang, C.-a. Di, and D. Zhu, "Advances of flexible pressure sensors toward artificial intelligence and health care applications", Mater. Horiz., Vol. 2, No. 2, pp. 140-156, 2015. https://doi.org/10.1039/C4MH00147H
  9. J. Ge, L. Sun, F. R. Zhang, Y. Zhang, L. A. Shi, H. Y. Zhao, H. W. Zhu, H. L. Jiang, and S. H. Yu, "A Stretchable Electronic Fabric Artificial Skin with Pressure-, Lateral Strain-, and Flexion-Sensitive Properties", Adv. Mater., Vol. 28, No. 4, pp. 722-728, 2016. https://doi.org/10.1002/adma.201504239
  10. Z. Ma, W. Wang, and D. Yu, "Highly Sensitive and Flexible Pressure Sensor Prepared by Simple Printing Used for Micro Motion Detection", Adv. Mater. Interfaces, Vol. 7, No. 2, pp. 1901704(1)-1901704(7), 2019. https://doi.org/10.1002/admi.201901704
  11. O. Atalay, A. Atalay, J. Gafford, and C. Walsh, "A Highly Sensitive Capacitive-Based Soft Pressure Sensor Based on a Conductive Fabric and a Microporous Dielectric Layer", Adv. Mater. Tech., Vol. 3, No. 1, pp. 1700237(1)-1700237(8), 2017. https://doi.org/10.1002/admt.201700237
  12. S. J. Woo, J. H. Kong, D. G. Kim, and J. M. Kim, "A thin all-elastomeric capacitive pressure sensor array based on micro-contact printed elastic conductors", J. Mater. Chem. C, Vol. 2, No. 22, pp. 4415-4422, 2014. https://doi.org/10.1039/c4tc00392f
  13. H. Li, Y. Zhang, H. Dai, W. Tong, Y. Zhou, J. Zhao, and Q. An, "A self-powered porous ZnS/PVDF-HFP mechanoluminescent composite film that converts human movement into eye-readable light", Nanoscale, Vol. 10, No. 12, pp. 5489-5495, 2018. https://doi.org/10.1039/c8nr00379c
  14. Q. Gao, H. Meguro, S. Okamoto, and M. Kimura, "Flexible tactile sensor using the reversible deformation of poly(3-hexylthiophene) nanofiber assemblies", Langmuir, Vol. 28, No. 51, pp. 17593-17596, 2012. https://doi.org/10.1021/la304240r
  15. M. Wang, N. Zhang, Y. Tang, H. Zhang, C. Ning, L. Tian, W. Li, J. Zhang, Y. Mao, and E. Liang, "Single-electrode triboelectric nanogenerators based on sponge-like porous PTFE thin films for mechanical energy harvesting and self-powered electronics", J. Mater. Chem. A Mater. , Vol. 5, No. 24, pp. 12252-12257, 2017. https://doi.org/10.1039/C7TA02680C
  16. D. H. Kwon, J. H. Kwon, J. Jeong, Y. Lee, S. Biswas, D. W. Lee, S. Lee, J. H. Bae and H. Kim, "Textile Triboelectric Nanogenerators with Diverse 3D-Spacer Fabrics for Improved Output Voltage", Electronics, Vol. 10, No. 8, 2021.
  17. J. H. Kwon, J. Jeong, Y. Lee, S. Biswas, J. K. Park, S. Lee, D. W. Lee, S. Lee, J. H. Bae and H. Kim, "Importance of Architectural Asymmetry for Improved Triboelectric Nanogenerators with 3D Spacer Fabrics", Macromol. Res., Vol. 29, No. 6, pp. 443-447, 2021. https://doi.org/10.1007/s13233-021-9052-1
  18. D. K. Kim, J. B. Jeong, K. Lim, J. Ko, P. Lang, M. Choi, S. Lee, J. H. Bae and H. Kim, "Improved Output Voltage of a Nanogenerator with 3D Fabric", J. Nanosci. Nanotechnol., Vol. 20, No. 8, pp. 4666-4670, 2020. https://doi.org/10.1166/jnn.2020.17803
  19. S. C. Mannsfeld, B. C. Tee, R. M. Stoltenberg, C. V. Chen, S. Barman, B. V. Muir, A. N. Sokolov, C. Reese, and Z. Bao, "Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers", Nat. Mater., Vol. 9, No. 10, pp. 859-864, 2010. https://doi.org/10.1038/nmat2834
  20. B. C. K. Tee, A. Chortos, R. R. Dunn, G. Schwartz, E. Eason, and Z. Bao, "Tunable Flexible Pressure Sensors using Microstructured Elastomer Geometries for Intuitive Electronics", Adv. Funct. Mater., Vol. 24, No. 34, pp. 5427-5434, 2014. https://doi.org/10.1002/adfm.201400712
  21. S. Chen, B. Zhuo, and X. Guo, "Large Area One-Step Facile Processing of Microstructured Elastomeric Dielectric Film for High Sensitivity and Durable Sensing over Wide Pressure Range", ACS Appl. Mater. Interfaces, Vol. 8, No. 31, pp. 20364-20370, 2016. https://doi.org/10.1021/acsami.6b05177
  22. B. C. K. Tee, A. Chortos, R. R. Dunn, G. Schwartz, E. Eason, and Z. Bao, "Tunable Flexible Pressure Sensors using Microstructured Elastomer Geometries for Intuitive Electronics", Adv. Funct. Mater., Vol. 24, No. 34, pp. 5427-5434, 2014. https://doi.org/10.1002/adfm.201400712
  23. H. Park, Y. R. Jeong, J. Yun, S. Y. Hong, S. Jin, S. J. Lee, G. Zi, and J. S. Ha, "Stretchable Array of Highly Sensitive Pressure Sensors Consisting of Polyaniline Nanofibers and Au-Coated Polydimethylsiloxane Micropillars", Acs Nano., Vol. 9, No. 10, pp. 9974-9985, 2015. https://doi.org/10.1021/acsnano.5b03510
  24. J. Park, Y. Lee, J. Hong, M. Ha, Y. D. Jung, H. Lim, S. Y. Kim, and H. Ko, "Giant Tunneling Piezoresistance of Composite Elastomers with Interlocked Microdome Arrays for Ultrasensitive and Multimodal Electronic Skins", Acs Nano., Vol. 8, No. 5, pp. 4689-4697, 2014. https://doi.org/10.1021/nn500441k
  25. B. Zhu, Z. Niu, H. Wang, W. R. Leow, H. Wang, Y. Li, L. Zheng, J. Wei, F. Huo, and X. Chen, "Microstructured graphene arrays for highly sensitive flexible tactile sensors", Small, Vol. 10, No. 18, pp. 3625-3631, 2014. https://doi.org/10.1002/smll.201401207
  26. Y. Pang, K. Zhang, Z. Yang, S. Jiang, Z. Ju, Y. Li, X. Wang, D. Wang, M. Jian, Y. Zhang, R. Liang, H. Tian, Y. Yang, and T. L. Ren, "Epidermis Microstructure Inspired Graphene Pressure Sensor with Random Distributed Spinosum for High Sensitivity and Large Linearity", ACS Nano, Vol. 12, No. 3, pp. 2346-2354, 2018. https://doi.org/10.1021/acsnano.7b07613
  27. S. Kang, J. Lee, S. Lee, S. Kim, J.-K. Kim, H. Algadi, S. Al-Sayari, D.-E. Kim, D. Kim and T. Lee, "Highly Sensitive Pressure Sensor Based on Bioinspired Porous Structure for Real-Time Tactile Sensing", Adv. Electr. Mater., Vol. 2, No. 12, 2016.
  28. D. Kwon, T. I. Lee, J. Shim, S. Ryu, M. S. Kim, S. Kim, T. S. Kim, and I. Park, "Highly Sensitive, Flexible, and Wearable Pressure Sensor Based on a Giant Piezocapacitive Effect of Three-Dimensional Microporous Elastomeric Dielectric Layer", ACS Appl. Mater. Interfaces, Vol. 8, No. 26, pp. 16922-16931, 2016. https://doi.org/10.1021/acsami.6b04225
  29. J. Choi, D. Kwon, K. Kim, J. Park, D. D. Orbe, J. Gu, J. Ahn, I. Cho, Y. Jeong, Y. Oh, and I. Park, "Synergetic Effect of Porous Elastomer and Percolation of Carbon Nanotube Filler toward High Performance Capacitive Pressure Sensors", ACS Appl. Mater. Interfaces, Vol. 12, No. 1, pp. 1698-1706, 2020. https://doi.org/10.1021/acsami.9b20097
  30. Y. Jung, T. Lee, J. Oh, B. G. Park, J. S. Ko, H. Kim, J. P. Yun and H. Cho, "Linearly Sensitive Pressure Sensor Based on a Porous Multistacked Composite Structure with Controlled Mechanical and Electrical Properties", ACS Appl. Mater. Interfaces, Vol. 13, No. 24, pp. 28975-28984, 2021. https://doi.org/10.1021/acsami.1c07640
  31. B. Park, Y. Jung, J. S. Ko, J. Park and H. Cho, "Self-Restoring Capacitive Pressure Sensor Based on Three-Dimensional Porous Structure and Shape Memory Polymer", Polym. (Basel), Vol. 13, No. 5, pp. 824(1)-824(9), 2021.
  32. X. Wang, Y. Gu, Z. Xiong, Z. Cui, and T. Zhang, "Silkmolded flexible, ultrasensitive, and highly stable electronic skin for monitoring human physiological signals", Adv. Mater., Vol. 26, No. 9, pp. 1336-1342, 2014. https://doi.org/10.1002/adma.201304248
  33. N. Bai, L. Wang, Q. Wang, J. Deng, Y. Wang, P. Lu, J. Huang, G. Li, Y. Zhang, J. Yang, K. Xie, X. Zhao, and C. F. Guo, "Graded intrafillable architecture-based iontronic pressure sensor with ultra-broad-range high sensitivity", Nat. Commun., Vol. 11, No. 1, pp. 209(1)-209(9), 2020. https://doi.org/10.1038/s41467-019-14054-9
  34. C. Pang, J. H. Koo, A. Nguyen, J. M. Caves, M. G. Kim, A. Chortos, K. Kim, P. J. Wang, J. B. Tok and Z. Bao, "Highly skin-conformal microhairy sensor for pulse signal amplification", Adv. Mater., Vol. 27, No. 4, pp. 634-640, 2015. https://doi.org/10.1002/adma.201403807
  35. Y. Jung, J. Choi, W. Lee, J. S. Ko, I. Park and H. Cho, "Irregular Microdome Structure-Based Sensitive Pressure Sensor Using Internal Popping of Microspheres", Adv. Funct. Mater., pp. 2201147(1)-2201147(12), 2022.