• Title/Summary/Keyword: hot wires

Search Result 45, Processing Time 0.032 seconds

Fire Cause Analysis of Local Heating on Carbon Type Hot Wire Electric Pad (카본열선을 사용하는 전기장판의 국부가열에 의한 화재원인 분석)

  • Song, Jae-Yong;Kim, Jin-Pyo;Nam, Jung-Woo;Sa, Seung-Hun
    • Fire Science and Engineering
    • /
    • v.24 no.4
    • /
    • pp.104-108
    • /
    • 2010
  • This paper describes electrical fire on electric pad using carbon type hot wires. A carbon type hot wires electric pad is virtually impossible to connect hot wire as a method of electrical welding or soldering. In order to connect between hot wires, that has to splice carbon type material connector. If junction of hot wires was occurrence of poor connection on electric pad, it increase contact resistance on this junction point. With increasing contact resistance, junction of hot wires on electric pad generates local heating and finally leads to electrical fire. In this paper, we analyzed shape of damage in hot wires caused by electrical local heating and investigated fire cause on electric pad using by carbon type hot wires.

Fire Cause Analysis on Electric Pad Due to Defect of Hot Wires (전기장판 열선 결함에 의한 전기화재 원인분석)

  • Song, J.Y.;Sa, S.H.;Nam, J.W.;Kim, J.P.;Cho, Y.J.;Oh, B.Y.
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.2
    • /
    • pp.7-12
    • /
    • 2012
  • This paper describes electrical fire on electric pad caused by defect of hot wires. We analyzed two type electric pad using by carbon type hot wire and magnetic shielded type hot wire. First, a carbon type hot wires electric pad is virtually impossible to connect hot wire as a method of electrical welding or soldering. In order to connect between hot wires, that has to splice carbon type material connector. If junction of hot wires was occurrence of poor connection on electric pad, it increase contact resistance on this junction point. With increasing contact resistance, junction of hot wires on electric pad generates local heating and finally leads to electrical fire. An electric pad using by a magnetic shielded type hot wire happened local heating on signal wire for sensing temperature-rise caused by applying current for magnetic shielded. With increasing local heating of signal wire, insulated coating of hot wire was melted. Finally the magnetic shielded type hot wire electric pad lead to electrical fire with breakdown between signal wire and hot wire. In this paper, we analyzed shape of damage in hot wire caused by electrical local heating and investigated fire cause on electric pad due to defect of hot wires.

Development of a New Sensor with Divided Multiple Long and Short Wires in Transient Hot-wire Technique (다수의 분할된 긴 열선과 짧은 열선을 갖는 새로운 비정상열선법 센서개발)

  • Lee, Shin-Pyo;Lee, Myung-Hoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.5
    • /
    • pp.510-517
    • /
    • 2004
  • A fine hot-wire is used both as a heating element and a temperature sensor in transient hot-wire method. The traditional sensor system is unnecessarily big so that it takes large fluid volume to measure the thermal conductivity. To dramatically reduce this fluid volume, a new sensor fabrication and a data processing method are proposed in this article. Contrast to the conventional and most popular two wire sensor, the new sensor system is made up of divided multiple long and short wires. Through validation experiments, it is found that the measured thermal conductivities of the glycerin are exactly same each other between the conventional and proposed new method. Also some technical considerations in arranging the multiple wires are briefly discussed.

Development of a New Sensor and Data Processing Method in Transient Hot-wire Technique for Nanofluid (나노유체의 열전도율 측정을 위한 새로운 비정상열선법 센서설계와 자료처리방법)

  • Lee, Shin-Pyo;Lee, Myung-Hoon;Kim, Min-Tae;Oh, Je-Myung
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.210-215
    • /
    • 2003
  • A fine hot-wire is used both as a heating element and a temperature sensor in transient hot-wire method. The traditional sensor system is unnecessarily big so that it takes large fluid volume to measure the thermal conductivity. To dramatically reduce this fluid volume, a new sensor fabrication and a data processing method are proposed in this article. Contrast to the conventional and most popular two wire sensor, the new sensor system is made up of divided multiple long and short wires. Through validation experiments, it is found that the measured thermal conductivities of the glycerin are exactly same each other between the conventional and proposed new method. Also some technical considerations in arranging the multiple wires are briefly discussed.

  • PDF

Characteristics of Temperature History of Slab concrete by the Change of Hot wire Heat Capacity at -10℃ (-10℃ 조건에서의 열선 열용량 크기 변화에 따른 슬래브 콘크리트의 온도이력 특성)

  • Jung, Eun-Bong;Ahn, Sang-Ku;Jung, Sang-Hyun;Koh, Kyung-Taek;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.05a
    • /
    • pp.75-77
    • /
    • 2013
  • In this study, the characteristics of temperature history was evaluated for three hot wires with different capacity installed in slab concrete which are relatively thin. Results can be summarized as follows. First, for the case of material using 5W hot wire, all decreased to below zero at or around 24 hours. Similarly, the material using 20W hot wire decreased to 2℃ below zero at or around 80 hours but satisfied the accumulative temperature of 45° D·D at 7 days of material age. On the other hand, the case of 30W hot wire, the biggest capacity, showed the high temperature history of 5℃ in average at all areas except the corners. Thus, the target accumulative temperature was secured at or around the 3 days of material age. Considering the above, the initial damage by freezing can be prevented only if 20W or higher hot wires are used for the slabs at -10℃ of extremely low temperature environment.

  • PDF

Development of Easy Measurement Method of Orthogonal Triple-Sensor Hot-Wire Anemometer (삼직교 열선유속계의 간편한 측정법 개발)

  • Kim, Jin-Kwon;Kang, Shin-Hyoung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.1
    • /
    • pp.85-92
    • /
    • 2000
  • Easy measurement method of orthogonal triple-sensor hot-wire anemometer is developed. Advantages of the new method is that it does not require either the exact orthogonality of the installed wires which cannot be kept during the probe manufacture and repair, nor the knowledge of the wire installation angles and the yaw and pitch coefficient of the wires. The new method introduced yaw and pitch calibration coefficients which are designed to increase monotonically with yaw and pitch angles. So the resulting calibration network is simple to recognize compared with that of the previously suggested calibration method. Verification experiments showed good accuracy and independency of the directional calibration on velocity.

Thermal-hydraulic analysis of He-Xe gas mixture in 2×2 rod bundle wrapped with helical wires

  • Chenglong Wang;Siyuan Chen;Wenxi Tian;G.H. Su;Suizheng Qiu
    • Nuclear Engineering and Technology
    • /
    • v.55 no.7
    • /
    • pp.2534-2546
    • /
    • 2023
  • Gas-cooled space reactor, which adopts He-Xe gas mixture as working fluid, is a better choice for megawatt power generation. In this paper, thermal-hydraulic characteristics of He-Xe gas mixture in 2×2 rod bundle wrapped with helical wires is numerically investigated. The velocity, pressure and temperature distribution of the coolant are obtained and analyzed. The results show that the existence of helical wires forms the vortexes and changes the velocity and temperature distribution. Hot spots are found at the contact corners between helical wires and fuel rods. The highest temperature of the hot spots reach 1600K, while the mainstream temperature is less than 400K. The helical wire structure increases the friction pressure drop by 20%-50%. The effect extent varies with the pitch and the number of helical wires. The helical wire structure leads to the reduction of Nusselt number. Comparing thermal-hydraulic performance ratios (THPR) of different structures, the THPR values are all less than 1. It means that gas-cooled space reactor adopting helical wires could not strengthen the core heat removal performance. This work provides the thermal-hydraulic design basis for He-Xe gas cooled space nuclear reactor.

Corrosion Characteristics of Aluminum Conductors Steel Rainforced wires (강심알루미늄연선의 부식특성)

  • 김용기;장세기;이덕희
    • Proceedings of the KSR Conference
    • /
    • 2002.10b
    • /
    • pp.981-986
    • /
    • 2002
  • ACSR of the catenary wires is corrosion degradation progressed by the effect of atmospheric pollution. ACSR which consists of galvanized steel stranded aluminum. The inside of Steel Reinforced is hot-dipped zinc coating steel wire and it takes charge of tension. If ACSR is exposed in atmosphere, the galvanic corrosion is occurred because it is contacted with aluminum. It is occurred the chemical reaction rapidly so that the local a defect is also occurred. If the catenary wires are exposed in atmosphere of pollution conditions, it may cause to reduce the mechanical strength by corrosion degradation and may cause to damage the wires by micro cracks. Accordingly, this study presents the effects of mechanical properties through the corrosion of ACSR.

  • PDF

A Study on the Earthing System of Using Discharge Electrodes (방전전극을 사용한 접지시스템에 관한 연구)

  • Seol, Dong-Hwa;Kim, Myeong-Saeng;Kim, Chang-Bong;Woo, Jea-Wook
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.8 no.2
    • /
    • pp.84-89
    • /
    • 2009
  • This paper has purpose of designing the earthing system installed on the ground without laying under the ground. As a solution for green IT environment to solve the existing earthing system, the third generation earthing machine was designed by using discharge electrodes, catalyzer, and hot wires. As a result of comparison, it found that the third generation earthing system suggested in this research had more increased discharge currents by 31[A] and the speed 25 times faster than the second generation earthing system. The suggested earthing system is allowed to be installed on the ground and solve construction costs, time, area, and environment pollution, which are problems in the existing earthing system. In addition, as the earthing technique has recently developed, the earthing system is classified by generation based on capacity.

  • PDF

Development of Reinforcement Side Outer Using TWB Hot Stamping Process (TWB 핫스탬핑 공법 적용을 통한 일체형 사이드아우터 부품 개발)

  • Kim, Soyoun;Kong, Hoyoung
    • Journal of Welding and Joining
    • /
    • v.33 no.6
    • /
    • pp.36-41
    • /
    • 2015
  • In the automotive industry, TWB hot stamping process is broadly adapted to reduce weight of the car and improve fuel efficiency. However, the process faces a problem of weakened strength of the welded zone after hot stamping process, due to the fact that Al-Si elements of the coating layer penetrating the welded zone. In this study, filler wires with high percentages of carbon and manganese is adapted during laser welding process to secure the strength of the fusion zone. In addition, wire feeding speed and laser welding speed are optimized by sample test.