• Title/Summary/Keyword: homotopy type

Search Result 36, Processing Time 0.024 seconds

RATIONAL HOMOTOPY TYPE OF MAPPING SPACES BETWEEN COMPLEX PROJECTIVE SPACES AND THEIR EVALUATION SUBGROUPS

  • Gatsinzi, Jean-Baptiste
    • Communications of the Korean Mathematical Society
    • /
    • v.37 no.1
    • /
    • pp.259-267
    • /
    • 2022
  • We use L models to compute the rational homotopy type of the mapping space of the component of the natural inclusion in,k : ℂPn ↪ ℂPn+k between complex projective spaces and show that it has the rational homotopy type of a product of odd dimensional spheres and a complex projective space. We also characterize the mapping aut1 ℂPn → map(ℂPn, ℂPn+k; in,k) and the resulting G-sequence.

HOMOTOPY TYPE OF A 2-CATEGORY

  • Song, Yongjin
    • Korean Journal of Mathematics
    • /
    • v.18 no.2
    • /
    • pp.175-183
    • /
    • 2010
  • The classical group completion theorem states that under a certain condition the homology of ${\Omega}BM$ is computed by inverting ${\pi}_0M$ in the homology of M. McDuff and Segal extended this theorem in terms of homology fibration. Recently, more general group completion theorem for simplicial spaces was developed. In this paper, we construct a symmetric monoidal 2-category ${\mathcal{A}}$. The 1-morphisms of ${\mathcal{A}}$ are generated by three atomic 2-dimensional CW-complexes and the set of 2-morphisms is given by the group of path components of the space of homotopy equivalences of 1-morphisms. The main part of the paper is to compute the homotopy type of the group completion of the classifying space of ${\mathcal{A}}$, which is shown to be homotopy equivalent to ${\mathbb{Z}}{\times}BAut^+_{\infty}$.

HOMOTOPY RESULTS FOR THE BETTER ADMISSIBLE CHANDRABHAN TYPE MULTIMAPS

  • Kim, Hoonjoo
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.35 no.4
    • /
    • pp.297-305
    • /
    • 2022
  • First, we generalize homotopy results of O'Regan [6] for Mönch type multimaps to Chandrabhan type multimaps. Second, we show that the better admissible Chandrabhan type multimaps have fixed point properties whenever their ranges are Klee approximable. Finally, we give examples of essential maps for various class of multimaps including 𝚽-condensing multimaps.

REMARKS ON SIMPLY k-CONNECTIVITY AND k-DEFORMATION RETRACT IN DIGITAL TOPOLOGY

  • Han, Sang-Eon
    • Honam Mathematical Journal
    • /
    • v.36 no.3
    • /
    • pp.519-530
    • /
    • 2014
  • To study a deformation of a digital space from the viewpoint of digital homotopy theory, we have often used the notions of a weak k-deformation retract [20] and a strong k-deformation retract [10, 12, 13]. Thus the papers [10, 12, 13, 16] firstly developed the notion of a strong k-deformation retract which can play an important role in studying a homotopic thinning of a digital space. Besides, the paper [3] deals with a k-deformation retract and its homotopic property related to a digital fundamental group. Thus, as a survey article, comparing among a k-deformation retract in [3], a strong k-deformation retract in [10, 12, 13], a weak deformation k-retract in [20] and a digital k-homotopy equivalence [5, 24], we observe some relationships among them from the viewpoint of digital homotopy theory. Furthermore, the present paper deals with some parts of the preprint [10] which were not published in a journal (see Proposition 3.1). Finally, the present paper corrects Boxer's paper [3] as follows: even though the paper [3] referred to the notion of a digital homotopy equivalence (or a same k-homotopy type) which is a special kind of a k-deformation retract, we need to point out that the notion was already developed in [5] instead of [3] and further corrects the proof of Theorem 4.5 of Boxer's paper [3] (see the proof of Theorem 4.1 in the present paper). While the paper [4] refers some properties of a deck transformation group (or an automorphism group) of digital covering space without any citation, the study was early done by Han in his paper (see the paper [14]).

DENSITY OF THE HOMOTOPY MINIMAL PERIODS OF MAPS ON INFRA-SOLVMANIFOLDS OF TYPE (R)

  • Lee, Jong Bum;Zhao, Xuezhi
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.2
    • /
    • pp.293-311
    • /
    • 2018
  • We study the homotopical minimal periods for maps on infra-solvmanifolds of type (R) using the density of the homotopical minimal period set in the natural numbers. This extends the result of [10] from flat manifolds to infra-solvmanifolds of type (R). We give some examples of maps on infra-solvmanifolds of dimension three for which the corresponding density is positive.

ISOTROPY REPRESENTATIONS OF CYCLIC GROUP ACTIONS ON HOMOTOPY SPHERES

  • Suh, Dong-Youp
    • Bulletin of the Korean Mathematical Society
    • /
    • v.25 no.2
    • /
    • pp.175-178
    • /
    • 1988
  • Let .SIGMA. be a smooth compact manifold without boundary having the same homotopy type as a sphere, which is called a homotopy sphere. Supose a group G acts smoothly on .SIGMA. with the fixed point set .SIGMA.$^{G}$ consists of two isolated fixed points p and q. In this case, tangent spaces $T_{p}$ .SIGMA. and $T_{q}$ .SIGMA. at isolated fixed points, as isotropy representations of G are called Smith equivalent. Moreover .SIGMA. is called a supporting homotopy sphere of Smith equivalent representations $T_{p}$ .SIGMA. and $T_{q}$ .SIGMA.. The study on Smith equivalence has rich history, and for this we refer the reader to [P] or [Su]. The following question of pp.A.Smith [S] motivates the study on Smith equivalence.e.

  • PDF

SELF-HOMOTOPY EQUIVALENCES OF MOORE SPACES DEPENDING ON COHOMOTOPY GROUPS

  • Choi, Ho Won;Lee, Kee Young;Oh, Hyung Seok
    • Journal of the Korean Mathematical Society
    • /
    • v.56 no.5
    • /
    • pp.1371-1385
    • /
    • 2019
  • Given a topological space X and a non-negative integer k, ${\varepsilon}^{\sharp}_k(X)$ is the set of all self-homotopy equivalences of X that do not change maps from X to an t-sphere $S^t$ homotopically by the composition for all $t{\geq}k$. This set is a subgroup of the self-homotopy equivalence group ${\varepsilon}(X)$. We find certain homotopic tools for computations of ${\varepsilon}^{\sharp}_k(X)$. Using these results, we determine ${\varepsilon}^{\sharp}_k(M(G,n))$ for $k{\geq}n$, where M(G, n) is a Moore space type of (G, n) for a finitely generated abelian group G.

A STUDY ON SINGULAR INTEGRO-DIFFERENTIAL EQUATION OF ABEL'S TYPE BY ITERATIVE METHODS

  • Behzadi, Sh.S.;Abbasbandy, S.;Allahviranloo, T.
    • Journal of applied mathematics & informatics
    • /
    • v.31 no.3_4
    • /
    • pp.499-511
    • /
    • 2013
  • In this article, Adomian decomposition method (ADM), variation iteration method(VIM) and homotopy analysis method (HAM) for solving integro-differential equation with singular kernel have been investigated. Also,we study the existence and uniqueness of solutions and the convergence of present methods. The accuracy of the proposed method are illustrated with solving some numerical examples.

V-SEMICYCLIC MAPS AND FUNCTION SPACES

  • Yoon, Yeon Soo;Yu, Jung Ok
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.9 no.1
    • /
    • pp.77-87
    • /
    • 1996
  • For any map $v:X{\rightarrow}Y$, the generalized Gottlieb set $G({\Sigma}A;X,v,Y)$ with respect to v is a subgroup of $[{\Sigma}A,Y]$. If $v:X{\rightarrow}Y$ has a left homotopy inverse $u:X{\rightarrow}Y$, then for any $f{\in}G({\Sigma}A;X,v,Y)$, $g{\in}G({\Sigma}A;X,u,Y)$, the function spaces $L({\Sigma}A,X;uf)$ and $L({\Sigma}A,X;g)$ have the same homotopy type.

  • PDF