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HOMOTOPY RESULTS FOR THE BETTER

ADMISSIBLE CHANDRABHAN TYPE MULTIMAPS

Hoonjoo Kim

Abstract. First, we generalize homotopy results of O’Regan [6]
for Mönch type multimaps to Chandrabhan type multimaps. Sec-
ond, we show that the better admissible Chandrabhan type mul-
timaps have fixed point properties whenever their ranges are Klee
approximable. Finally, we give examples of essential maps for var-
ious class of multimaps including Φ-condensing multimaps.

1. Introduction and Preliminaries

O’Regan [6] presented homotopy results for the better admissible
Mönch type multimaps on Hausdorff topological vector spaces. From
this, generalized Leray–Schauder alternatives for some general classes
of maps were obtained, which contain the well known Leray–Schauder
principles in [2, 5, 7]. Park introduced the better admissible class in [8, 9]
and Dhage [3] introduced Chandrabhan multimaps which generalizes
Mönch type multimaps.

In Section 2, we modify the definition of Chandrabhan type mul-
timaps and generalize homotopy results of [2, 6] to Chandrabhan type
multimaps. In Section 3, we show that the better admissible Chandrab-
han type multimaps have fixed point properties whenever their ranges
are Klee approximable. Finally, we give examples of essential multimaps
for various class of multimaps including Φ-condensing multimaps. Our
new results improve and extend theorems in [2, 6, 10].

A multimap (or simply, a map) F : X ⊸ Y is a function from a set
X into the power set of Y ; that is, a function with the values F (x) ⊂ Y
for all x ∈ X. For A ⊂ X, let F (A) :=

⋃
{F (x) |x ∈ A}. Throughout
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this paper, we assume that multimaps have nonempty values otherwise
explicitly stated or obvious from the context. The graph of F is denoted
by GrF .

A t.v.s. means a Hausdorff topological vector space.

Let E be a t.v.s.,X be a nonempty subset of E, and Y be a topological
space. A polytope P in a subset X of a t.v.s. E is a nonempty compact
convex subset of X contained in a finite dimensional subspace of E.

The better admissible class B of maps from X into Y is defined as
follows:

F ∈ B(X,Y ) ⇐⇒ F : X ⊸ Y is a map such that, for each polytope
P in X and for any continuous function ϕ : F (P ) → P, the composition
ϕ ◦ F |P : P ⊸ P has a fixed point.

F ∈ Bκ(X,Y ) ⇐⇒ F : X ⊸ Y is a map such that, for any
compact, convex subset K of X, there exists a closed map G ∈ B(K,Y )
with G(x) ⊂ F (x) for each x ∈ K.

Clearly B(X,Y ) ⊂ Bκ(X,Y ).

F ∈ D(X,Y ) ⇐⇒ F ∈ Bκ(X,Y ) is a closed map (i.e., GrF is
closed), takes compact sets into relatively compact sets, and satisfies
one of the following conditions for a compact subset B of X:

(C) if A ⊂ X ∩ co(B ∪ F (A)), then A is compact, or

(CC) if A ⊂ X ∩ co(B ∪ F (A)), then A is compact.

In a Banach space, Dhage [3] called a closed valued map as a Chan-
drabhan type map if it satisfies the condition (C) with a countable set B
and specially called it a Mönch type map when B is a point in X.

Let C be a closed, convex subset of E, B be a compact subset of C
and U be an open subset of C containing B.

F ∈ D∂U (U,C) ⇐⇒ F ∈ D(U,C) with x /∈ F (x) for all x ∈ ∂U
where ∂U denotes the boundary of U in C.

A map F ∈ D∂U (U,C) is called essential in D∂U (U,C) if for every
G ∈ D∂U (U,C) with G|∂U = F |∂U , there exists x ∈ U with x ∈ G(x).
The essentiality is introduced in [1, 6].

Let E be a t.v.s. and Z be a lattice with a least element, which is de-
noted by 0. A function Φ : E ⊸ Z is called a measure of precompactness
on E provided that the following conditions hold for any A,B ⊂ E:

(1) A is relative compact iff Φ(A) = 0;

(2) Φ(A ∪B) = max{Φ(A),Φ(B)}; and
(3) Φ(coA) = Φ(A).

It follows that A ⊂ B implies Φ(A) ⊂ Φ(B).
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for all x ⊂ E, a map T : X ⊸ E is said to be Φ-condensing provided
that if A ⊂ X and Φ(A) ≤ Φ(T (A)), then A is relatively compact; that
is, Φ(A) = 0. For details, see [7].

Note that a Φ-condensing map satisfies the conditions (C) and (CC)
for any compact subset B of X.

From now on, we assume that Y is a topological space, E is a t.v.s.,
X is a nonempty subset of E, C is a closed, convex subset of E, B is a
compact subset of C and U is an open subset of C containing B.

2. Essential maps for the better admissible Chandrabhan
type maps

Theorem 2.1. Suppose F ∈ D(U,C) and assume the following con-
ditions are satisfied:

(1) the constant map S : U ⊸ C defined by S(x) = B for all x ∈ U is
essential in D∂U (U,C);

(2) x /∈ λF (x) + (1− λ)B for all x ∈ ∂U and λ ∈ (0, 1]; and
(3) for any continuous function µ : U → [0, 1] with µ(∂U) = 0 and for

any map H ∈ D(U,C) with H|∂U = F |∂U , the map Rµ : U ⊸ C

defined by Rµ(x) = µ(x)H(x) + (1 − µ(x))B for all x ∈ U is in

Bκ(U,C).

Then F is essential in D∂U (U,C).

Proof. By (2), F ∈ D∂U (U,C). Let H ∈ D∂U (U,C) with H|∂U =
F |∂U . It is enough to show H has a fixed point in U . Consider

D = {x ∈ U : x ∈ tH(x) + (1− t)B for some t ∈ [0, 1]}.
Note B ⊂ D. Also D is closed (in C) since H is a closed map and
B is compact. Furthermore D is compact, since D ⊂ co(H(D) ∪ B),
and H satisfies condition (C) or (CC) for B. In addition D ∩ ∂U = ∅,
otherwise if x ∈ D ∩ ∂U , then F (x) = H(x) since H|∂U = F |∂U . So
x ∈ tF (x) + (1− t)B and x ∈ B by condition (2), but B ∩ ∂U = ∅.

Because a t.v.s. is completely regular, there exists a continuous µ :
U → [0, 1] with µ(∂U) = 0 and µ(D) = 1.

Define a map Rµ : U ⊸ C by Rµ(x) = µ(x)H(x) + (1 − µ(x))B for

all x ∈ U , then Rµ ∈ Bκ(U,C) by condition (3). Also Rµ is a closed
map. Moreover, Rµ takes compact sets into relatively compact sets.

Indeed, let A be a compact subset of U and (yα) be a net in Rµ(A),
i.e., yα = µ(xα)zα + (1 − µ(xα))bα for some zα ∈ H(xα) with xα ∈ A

and bα ∈ B. Then the compactness of A, B and H(A) guarantees that
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there exist x ∈ A, b ∈ B and z ∈ H(A) with xα → x, bα → b and
zα → z without loss of generality. Since GrH and GrRµ are closed, we
have z ∈ H(x) and y = µ(x)z + (1− µ(x))b ∈ Rµ(x). Thus yα → y and
y ∈ Rµ(A). Notice Rµ|∂U = B.

In addition, we verify that Rµ satisfies condition (C) for B if H

satisfies condition (C) for B. To see this, let A ⊂ U and A ⊂ co(B ∪
Rµ(A)). Then Rµ(A) ⊂ co(B ∪H(A)) yields

A ⊂ co(B ∪Rµ(A)) ⊂ co(co(B ∪H(A))) = co(B ∪H(A)).

Since H satisfies condition (C) for B, A is compact.

By the same argument, it can be shown that Rµ satisfies condition
(CC) if H satisfies condition (CC) for B.

Hence Rµ ∈ D∂U (U,C) with Rµ|∂U = B and D ∩ ∂U = ∅. Now
condition (1) implies that there exists x ∈ U with x ∈ Rµ(x). Thus
x ∈ D and so µ(x) = 1, i.e., x ∈ H(x).

Remark 2.2. Theorem 2.1 and Theorem 2.4 in [6] are special cases
in which B = {x0} for some x0 ∈ U in our Theorem 2.1.

F ∈ M(U,C) ⇐⇒ F : U ⊸ C is a nonempty, convex, compact val-
ued upper semicontinuous map, and satisfies (C) or (CC) for a compact
subset B of X.

F ∈ M∂U (U,C) ⇐⇒ F ∈ M(U,C) with x /∈ F (x) for all x ∈ ∂U .

A map F ∈ M∂U (U,C) is called essential in M∂U (U,C) if for every
G ∈ M∂U (U,C) with G|∂U = F |∂U , there exists x ∈ U with x ∈ G(x).

Note that a nonempty, convex, compact valued upper semicontinuous
map F : U ⊸ C is in B(X,Y ) [4], F is also a closed map and F takes
compact sets into compact sets. Hence M(U,C) ⊂ D(U,C) and any
F ∈ M(U,C) satisfies (3) in Theorem 2.1.

Therefore we obtain the following corollary which generalizes Theo-
rem 2.6 in [2].

Corollary 2.3. Suppose F ∈ M(U,C) and assume the following
conditions are satisfied:

(1) the constant map S : U ⊸ C defined by S(x) = B for all x ∈ U is
essential in M∂U (U,C); and

(2) x /∈ λF (x) + (1− λ)B for all x ∈ ∂U and λ ∈ (0, 1].

Then F is essential in M∂U (U,C).
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3. Examples of essential maps

Theorem 3.1. Suppose that for any closed, convex subset K of C
and for any map G ∈ D(K,K), G has a fixed point in K. For any map
θ ∈ D∂U (U,C) with θ|∂U = B and Q = co(θ(U) ∪ B), assume that the
following conditions are satisfied:

(4) for θ satisfying condition (C) [or (CC)] for B and for any set A ⊂ Q
with A ⊂ co(B∪θ(A∩U)) [or A ⊂ co(B∪θ(A∩U)), respectively],
if θ(A ∩ U) is relatively compact, then A is compact; and

(5) the map J : Q ⊸ Q defined by

J(x) =

{
θ(x), x ∈ U ∩Q

B, otherwise

is in Bκ(Q,Q).

Then the constant map S : U ⊸ C defined by S(x) = B for all x ∈ U
is essential in D∂U (U,C).

Proof. Let θ ∈ D∂U (U,C) with θ|∂U = B. We must show that there
exists an x ∈ U with x ∈ θ(x). To do this, we claim J ∈ D(Q,Q).

By condition (5), J ∈ Bκ(Q,Q). Note J is a closed map and J takes
compact sets into relatively compact sets.

Next we assert that J satisfies condition (C) if θ satisfies condition
(C) for B. To see this, notice if A ⊂ Q with A ⊂ co(B ∪ J(A)), then

(∗) A ⊂ co(B ∪ θ(A ∩ U)),

since θ|∂U = B. Thus A ∩ U ⊂ co(B ∪ θ(A ∩ U)), and since θ satisfies
condition (C) for B, we have that A ∩ U is compact, and so θ(A ∩ U)
relatively compact. This, together with conditions (4) and (∗), yields
that A is compact. Therefore, J satisfies condition (C) for B.

By the same argument, we can show that J satisfies condition (CC)
if θ satisfies condition (CC) for B.

Therefore J ∈ D(Q,Q). Since Q is a closed convex subset of C, there
exists x ∈ Q with x ∈ J(x) by the assumption. If x /∈ U , we have
x ∈ J(x) = B, which is a contradiction since B ⊂ U . Thus x ∈ U and
x ∈ J(x) = θ(x).

Remarks 3.2. 1. Theorem 3.1 generalizes Theorem 2.2 and Theorem
2.5 in [6].

2. As mentioned in [6], condition (4) holds if one of the following
conditions is satisfied:
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1) θ is Φ-condensing, since Φ(A) ≤ Φ(θ(A ∩ U)) ≤ Φ(θ(A ∩ U)) = 0;
2) co(K) is compact for any compact subset K of Q.

Let X be a subset of a t.v.s. E and V denotes a fundamental system
of open neighborhoods of the origin 0 of E. A compact subset K of X
is said to be Klee approximable in X if for any V ∈ V, there exists a
continuous function h : K → X such that x − h(x) ∈ V for all x ∈ K
and h(K) is contained in a polytope in X.

The followings are examples of Klee approximable sets:

(1) Any polytope in a subset of a t.v.s;
(2) Any compact subset K of a convex subset X in a locally convex

t.v.s;
(3) Any compact subset K whenever coK is a Klee approximable sub-

set of X.

For details, see [10]. Note that any compact subset of a Klee approx-
imable set is also Klee approximable.

The following proposition is Corollary 4.2 in [10]:

Proposition 3.3. Let X be a subset of a t.v.s. E and F ∈ B(X,X)

be a compact closed multimap. If F (X) is a Klee approximable subset
of X, then F has a fixed point.

The compactness of F in Proposition 3.3 is relaxed as follows:

Theorem 3.4. LetX be a subset of a t.v.s. E, B be a compact subset
of X and F ∈ Bκ(X,X) be a closed multimap satisfying condition (C)

or condition (CC) for B. If F (X) is a Klee approximable subset of X,
then F has a fixed point.

Proof. Case 1. F satisfies condition (C) for B:
Put K0 = co(B), Kn+1 = co(B ∪F (Kn)) for each n = 0, 1, 2, · · · and

K =
⋃∞

n=0Kn. By induction, K0 ⊆ K1 ⊆ · · · ⊆ Kn ⊆ Kn+1 · · · .
We can show that K = co(B ∪F (K)). For each n, co(B ∪F (Kn)) ⊆

co(B ∪ F (K)), so K =
⋃∞

n=0 co(B ∪ F (Kn)) ⊆ co(B ∪ F (K)). On the
other hand, K is convex, since Kn is convex for each n = 0, 1, 2, · · · . As
K contains B and

⋃∞
n=0 F (Kn) = F (K), co(B ∪ F (K)) ⊆ K.

By condition (C) for B, K is compact. Define a map G : K ⊸ K
by G(x) = F (x) ∩ K. Since F (K) ⊂ K, G(x) ̸= ∅ for all x ∈ K.
Note that G ∈ Bκ(K,K). As K is compact and convex, there exists
a closed map H ∈ B(K,K) such that H(x) ⊂ G(x) for each x ∈ K.

Note that H is a compact multimap and H(K) is a Klee approximable
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subset of X. Thus Proposition 3.3 guarantees the existence of a point
x ∈ H(x) ⊂ G(x) ⊂ F (x).

Case 2. F satisfies condition (CC) for B:
Put K0 = co(B), Kn+1 = co(B ∪F (Kn)) for each n = 0, 1, 2, · · · and

K =
⋃∞

n=0Kn. The same argument as above yields K = co(B ∪ F (K))

and K is compact.
Define a map G : K ⊸ K by G(x) = F (x) ∩ K. Then G(x) ̸= ∅,

since K is compact and F |K is closed. By the same argument, there

exists a compact closed map H ∈ B(K,K) such that H(x) ⊂ G(x) for
each x ∈ K. Note also that H satisfies all the conditions of Proposition
3.3.

As mentioned in Remark 3.2, Φ-condensing maps satisfy the condi-
tions (C) and (CC) for any compact subset B of X, so the following
corollary is obtained:

Corollary 3.5. Let X be a subset of a t.v.s. E and F ∈ Bκ(X,X)

be a Φ-condensing closed multimap. If F (X) is a Klee approximable
subset of X, then F has a fixed point.

F ∈ DK(X,Y ) ⇐⇒ F ∈ D(X,Y ) and F (X) is a Klee approximable.

F ∈ DK∂U (U,C) ⇐⇒ F ∈ DK(U,C) with x /∈ F (x) for all x ∈ ∂U .

A map F ∈ DK∂U (U,C) is called essential in DK∂U (U,C) if for every
G ∈ DK∂U (U,C) with G|∂U = F |∂U , there exists x ∈ U with x ∈ G(x).

From Theorem 3.1 and Theorem 3.4, we obtain the following theorem:

Theorem 3.6. For any map θ ∈ DK∂U (U,C) with θ|∂U = B and
Q = co(θ(U) ∪B), assume the following conditions are satisfied;

(4) for θ satisfying condtion (C) [or (CC)] for B and for any set A ⊂ Q
with A ⊂ co(B∪θ(A∩U)) [or A ⊂ co(B∪θ(A∩U)), respectively],
if θ(A ∩ U) is relatively compact, then A is compact; and

(5) the map J : Q ⊸ Q defined by

J(x) =

{
θ(x), x ∈ U ∩Q

B, otherwise

is in Bκ(Q,Q).

Then the constant map S : U ⊸ C defined by S(x) = B for all x ∈ U
is essential in DK∂U (U,C).
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To find essential maps for a class of Φ-condensing multimaps, we
define the followings:

F ∈ K(X,Y ) ⇐⇒ F ∈ Bκ(X,Y ) is a closed Φ-condensing map,

takes compact sets into relatively compact sets and F (X) is a Klee
approximable.

F ∈ K∂U (U,C) ⇐⇒ F ∈ K(U,C) with x /∈ F (x) for all x ∈ ∂U .

A map F ∈ K∂U (U,C) is called essential in K∂U (U,C) if for every
G ∈ K∂U (U,C) with G|∂U = F |∂U , there exists x ∈ U with x ∈ G(x).

Since any Φ-condensing map satisfies condition (C) and condition
(CC) for any compact subset B of X, K(X,Y ) ⊂ DK(X,Y ) ⊂ D(X,Y ).
Any Φ-condensing map also satisfies (4) in Theorem 3.6. Therefore the
following theorem holds:

Theorem 3.7. For any map θ ∈ K∂U (U,C) with θ|∂U = B and
Q = co(θ(U) ∪B), assume the map J : Q ⊸ Q defined by

J(x) =

{
θ(x), x ∈ U ∩Q

B, otherwise

is in Bκ(Q,Q). Then the constant map S : U ⊸ C defined by S(x) = B
for all x ∈ U is essential in K∂U (U,C).
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