• 제목/요약/키워드: homotopy theory

검색결과 30건 처리시간 0.022초

INVARIANCE OF DOMAIN THEOREM FOR DEMICONTINUOUS MAPPINGS OF TYPE ( $S_+$)

  • Park, Jong-An
    • 대한수학회보
    • /
    • 제29권1호
    • /
    • pp.81-87
    • /
    • 1992
  • Wellknown invariance of domain theorems are Brower's invariance of domain theorem for continuous mappings defined on a finite dimensional space and Schauder-Leray's invariance of domain theorem for the class of mappings I+C defined on a infinite dimensional Banach space with I the identity and C compact. The two classical invariance of domain theorems were proved by applying the homotopy invariance of Brower's degree and Leray-Schauder's degree respectively. Degree theory for some class of mappings is a useful tool for mapping theorems. And mapping theorems (or surjectivity theorems of mappings) are closely related with invariance of domain theorems for mappings. In[4, 5], Browder and Petryshyn constructed a multi-valued degree theory for A-proper mappings. From this degree Petryshyn [9] obtained some invariance of domain theorems for locally A-proper mappings. Recently Browder [6] has developed a degree theory for demicontinuous mapings of type ( $S_{+}$) from a reflexive Banach space X to its dual $X^{*}$. By applying this degree we obtain some invariance of domain theorems for demicontinuous mappings of type ( $S_{+}$). ( $S_{+}$).

  • PDF

디지털건축공간에 나타난 위상기하학적 불변항의 표현특성에 관한 연구 (A Study on the Characteristics of Topological Invariant Expression in the Space of Digital Architecture)

  • 배강원;박찬일
    • 한국실내디자인학회논문집
    • /
    • 제14권3호
    • /
    • pp.64-72
    • /
    • 2005
  • The purpose of this study is to propose a topological design principles and to analyze the space of digital architecture applying topological invariant expressive characteristics. As this study is based on topology as a science of true world's pattern, we intented to explain the concepts and provide some methods of low-level and hyperspace topological invariant Properties. Four major aspects are discussed. Those are connection theory, boundary concept, homotopy group, knot Pattern theory as topological invariant properties. Then we intented to make understand topological characteristics of the Algorithms, luring machine, cellular automata, string theory, membrane, DNA and supramolecular chemistry. In fine, the topological invariant properties of the digital architecture as genetic algorithms based on self-organization and heterogeneous networks of interacting actors can be analyzed and used as a critical tool. Therefore topology can be provided endless possibilities for architecture, designers and scientists intended in expressing the more complex and organic patterns of nature as life.

A relative root Nielsen number

  • Yang, Ki-Yeol
    • 대한수학회논문집
    • /
    • 제11권1호
    • /
    • pp.245-252
    • /
    • 1996
  • The relative Nielsen number N(f;X,A) was introduced in 1986. It gives us a better, and ideally sharp, lower bound for the minimum number MF[f;X,A] of fixed points in the homotopy class of the map $f;(X,A) \to (X,A)$. Similarly, we also can think about the Nielsen map $f:(X,A) \to (X,A)$. Similarly, we also can be think about the Nielsen root theory. In this paper, we introduce a relative root Nielsen number N(f;X,A,c) of $f:(X,A) \to (Y,B)$ and show some basic properties.

  • PDF

A semi-analytical procedure for cross section effect on the buckling and dynamic stability of composite imperfect truncated conical microbeam

  • Zhang, Peng;Gao, Yanan;Moradi, Zohre;Ali, Yasar Ameer;Khadimallah, Mohamed Amine
    • Steel and Composite Structures
    • /
    • 제44권3호
    • /
    • pp.371-388
    • /
    • 2022
  • The present study tackles the problem of forced vibration of imperfect axially functionally graded shell structure with truncated conical geometry. The linear and nonlinear large-deflection of the structure are considered in the mathematical formulation using von-Kármán models. Modified coupled stress method and principle of minimum virtual work are employed in the modeling to obtain the final governing equations. In addition, formulations of classical elasticity theory are also presented. Different functions, including the linear, convex, and exponential cross-section shapes, are considered in the grading material modeling along the thickness direction. The grading properties of the material are a direct result of the porosity change in the thickness direction. Vibration responses of the structure are calculated using the semi-analytical method of a couple of homotopy perturbation methods (HPM) and the generalized differential quadrature method (GDQM). Contradicting effects of small-scale, porosity, and volume fraction parameters on the nonlinear amplitude, frequency ratio, dynamic deflection, resonance frequency, and natural frequency are observed for shell structure under various boundary conditions.

INDUCED HOPF CORING STRUCTURES

  • Saramago, Rui Miguel
    • 대한수학회지
    • /
    • 제48권3호
    • /
    • pp.627-639
    • /
    • 2011
  • Hopf corings are dened in this work as coring objects in the category of algebras over a commutative ring R. Using the Dieudonn$\'{e}$ equivalences from [7] and [19], one can associate coring structures built from the Hopf algebra $F_p[x_0,x_1,{\ldots}]$, p a prime, with Hopf ring structures with same underlying connected Hopf algebra. We have that $F_p[x_0,x_1,{\ldots}]$ coring structures classify thus Hopf ring structures for a given Hopf algebra. These methods are applied to dene new ring products in the Hopf algebras underlying known Hopf rings that come from connective Morava ${\kappa}$-theory.

FIBREWISE INFINITE SYMMETRIC PRODUCTS AND M-CATEGORY

  • Hans, Scheerer;Manfred, Stelzer
    • 대한수학회보
    • /
    • 제36권4호
    • /
    • pp.671-682
    • /
    • 1999
  • Using a base-point free version of the infinite symmetric product we define a fibrewise infinite symmetric product for any fibration $E\;\longrightarrow\;B$. The construction works for any commutative ring R with unit and is denoted by $R_f(E)\;l\ongrightarrow\;B$. For any pointed space B let $G_I(B)\;\longrightarrow\;B$ be the i-th Ganea fibration. Defining $M_R-cat(B):= inf{i\midR_f(G_i(B))\longrihghtarrow\;B$ admits a section} we obtain an approximation to the Lusternik-Schnirelmann category of B which satisfies .g.a product formula. In particular, if B is a 1-connected rational space of finite rational type, then $M_Q$-cat(B) coincides with the well-known (purely algebraically defined) M-category of B which in fact is equal to cat (B) by a result of K.Hess. All the constructions more generally apply to the Ganea category of maps.

  • PDF

Evaluation Subgroups of Mapping Spaces over Grassmann Manifolds

  • Abdelhadi Zaim
    • Kyungpook Mathematical Journal
    • /
    • 제63권1호
    • /
    • pp.131-139
    • /
    • 2023
  • Let Vk,n (ℂ) denote the complex Steifel and Grk,n (ℂ) the Grassmann manifolds for 1 ≤ k < n. In this paper, we compute, in terms of the Sullivan minimal models, the evaluation subgroups and, more generally, the relative evaluation subgroups of the fibration p : Vk,k+n (ℂ) → Grk,k+n (ℂ). In particular, we prove that G* (Grk,k+n (ℂ), Vk,k+n (ℂ) ; p) is isomorphic to Grel* (Grk,k+n (ℂ), Vk,k+n (ℂ) ; p) ⊕ G* (Vk,k+n (ℂ)).

A NOTE ON DERIVATIONS OF A SULLIVAN MODEL

  • Kwashira, Rugare
    • 대한수학회논문집
    • /
    • 제34권1호
    • /
    • pp.279-286
    • /
    • 2019
  • Complex Grassmann manifolds $G_{n,k}$ are a generalization of complex projective spaces and have many important features some of which are captured by the $Pl{\ddot{u}}cker$ embedding $f:G_{n,k}{\rightarrow}{\mathbb{C}}P^{N-1}$ where $N=\(^n_k\)$. The problem of existence of cross sections of fibrations can be studied using the Gottlieb group. In a more generalized context one can use the relative evaluation subgroup of a map to describe the cohomology of smooth fiber bundles with fiber the (complex) Grassmann manifold $G_{n,k}$. Our interest lies in making use of techniques of rational homotopy theory to address problems and questions involving applications of Gottlieb groups in general. In this paper, we construct the Sullivan minimal model of the (complex) Grassmann manifold $G_{n,k}$ for $2{\leq}k<n$, and we compute the rational evaluation subgroup of the embedding $f:G_{n,k}{\rightarrow}{\mathbb{C}}P^{N-1}$. We show that, for the Sullivan model ${\phi}:A{\rightarrow}B$, where A and B are the Sullivan minimal models of ${\mathbb{C}}P^{N-1}$ and $G_{n,k}$ respectively, the evaluation subgroup $G_n(A,B;{\phi})$ of ${\phi}$ is generated by a single element and the relative evaluation subgroup $G^{rel}_n(A,B;{\phi})$ is zero. The triviality of the relative evaluation subgroup has its application in studying fibrations with fibre the (complex) Grassmann manifold.

COMPARISON AMONG SEVERAL ADJACENCY PROPERTIES FOR A DIGITAL PRODUCT

  • Han, Sang-Eon
    • 호남수학학술지
    • /
    • 제37권1호
    • /
    • pp.135-147
    • /
    • 2015
  • Owing to the notion of a normal adjacency for a digital product in [8], the study of product properties of digital topological properties has been substantially done. To explain a normal adjacency of a digital product more efficiently, the recent paper [22] proposed an S-compatible adjacency of a digital product. Using an S-compatible adjacency of a digital product, we also study product properties of digital topological properties, which improves the presentations of a normal adjacency of a digital product in [8]. Besides, the paper [16] studied the product property of two digital covering maps in terms of the $L_S$- and the $L_C$-property of a digital product which plays an important role in studying digital covering and digital homotopy theory. Further, by using HS- and HC-properties of digital products, the paper [18] studied multiplicative properties of a digital fundamental group. The present paper compares among several kinds of adjacency relations for digital products and proposes their own merits and further, deals with the problem: consider a Cartesian product of two simple closed $k_i$-curves with $l_i$ elements in $Z^{n_i}$, $i{\in}\{1,2\}$ denoted by $SC^{n_1,l_1}_{k_1}{\times}SC^{n_2,l_2}_{k_2}$. Since a normal adjacency for this product and the $L_C$-property are different from each other, the present paper address the problem: for the digital product does it have both a normal k-adjacency of $Z^{n_1+n_2}$ and another adjacency satisfying the $L_C$-property? This research plays an important role in studying product properties of digital topological properties.