Wellknown invariance of domain theorems are Brower's invariance of domain theorem for continuous mappings defined on a finite dimensional space and Schauder-Leray's invariance of domain theorem for the class of mappings I+C defined on a infinite dimensional Banach space with I the identity and C compact. The two classical invariance of domain theorems were proved by applying the homotopy invariance of Brower's degree and Leray-Schauder's degree respectively. Degree theory for some class of mappings is a useful tool for mapping theorems. And mapping theorems (or surjectivity theorems of mappings) are closely related with invariance of domain theorems for mappings. In[4, 5], Browder and Petryshyn constructed a multi-valued degree theory for A-proper mappings. From this degree Petryshyn [9] obtained some invariance of domain theorems for locally A-proper mappings. Recently Browder [6] has developed a degree theory for demicontinuous mapings of type ( $S_{+}$) from a reflexive Banach space X to its dual $X^{*}$. By applying this degree we obtain some invariance of domain theorems for demicontinuous mappings of type ( $S_{+}$). ( $S_{+}$).
The purpose of this study is to propose a topological design principles and to analyze the space of digital architecture applying topological invariant expressive characteristics. As this study is based on topology as a science of true world's pattern, we intented to explain the concepts and provide some methods of low-level and hyperspace topological invariant Properties. Four major aspects are discussed. Those are connection theory, boundary concept, homotopy group, knot Pattern theory as topological invariant properties. Then we intented to make understand topological characteristics of the Algorithms, luring machine, cellular automata, string theory, membrane, DNA and supramolecular chemistry. In fine, the topological invariant properties of the digital architecture as genetic algorithms based on self-organization and heterogeneous networks of interacting actors can be analyzed and used as a critical tool. Therefore topology can be provided endless possibilities for architecture, designers and scientists intended in expressing the more complex and organic patterns of nature as life.
In this paper, as a survey paper, we review many works related to fixed point theory for digital spaces using Lefschetz fixed point theorem, Banach fixed point theorem, Nielsen fixed point theorem and so forth. Besides, we refer some properties of the fixed point property of a digital k-retract.
The relative Nielsen number N(f;X,A) was introduced in 1986. It gives us a better, and ideally sharp, lower bound for the minimum number MF[f;X,A] of fixed points in the homotopy class of the map $f;(X,A) \to (X,A)$. Similarly, we also can think about the Nielsen map $f:(X,A) \to (X,A)$. Similarly, we also can be think about the Nielsen root theory. In this paper, we introduce a relative root Nielsen number N(f;X,A,c) of $f:(X,A) \to (Y,B)$ and show some basic properties.
The present study tackles the problem of forced vibration of imperfect axially functionally graded shell structure with truncated conical geometry. The linear and nonlinear large-deflection of the structure are considered in the mathematical formulation using von-Kármán models. Modified coupled stress method and principle of minimum virtual work are employed in the modeling to obtain the final governing equations. In addition, formulations of classical elasticity theory are also presented. Different functions, including the linear, convex, and exponential cross-section shapes, are considered in the grading material modeling along the thickness direction. The grading properties of the material are a direct result of the porosity change in the thickness direction. Vibration responses of the structure are calculated using the semi-analytical method of a couple of homotopy perturbation methods (HPM) and the generalized differential quadrature method (GDQM). Contradicting effects of small-scale, porosity, and volume fraction parameters on the nonlinear amplitude, frequency ratio, dynamic deflection, resonance frequency, and natural frequency are observed for shell structure under various boundary conditions.
Hopf corings are dened in this work as coring objects in the category of algebras over a commutative ring R. Using the Dieudonn$\'{e}$ equivalences from [7] and [19], one can associate coring structures built from the Hopf algebra $F_p[x_0,x_1,{\ldots}]$, p a prime, with Hopf ring structures with same underlying connected Hopf algebra. We have that $F_p[x_0,x_1,{\ldots}]$ coring structures classify thus Hopf ring structures for a given Hopf algebra. These methods are applied to dene new ring products in the Hopf algebras underlying known Hopf rings that come from connective Morava ${\kappa}$-theory.
Using a base-point free version of the infinite symmetric product we define a fibrewise infinite symmetric product for any fibration $E\;\longrightarrow\;B$. The construction works for any commutative ring R with unit and is denoted by $R_f(E)\;l\ongrightarrow\;B$. For any pointed space B let $G_I(B)\;\longrightarrow\;B$ be the i-th Ganea fibration. Defining $M_R-cat(B):= inf{i\midR_f(G_i(B))\longrihghtarrow\;B$ admits a section} we obtain an approximation to the Lusternik-Schnirelmann category of B which satisfies .g.a product formula. In particular, if B is a 1-connected rational space of finite rational type, then $M_Q$-cat(B) coincides with the well-known (purely algebraically defined) M-category of B which in fact is equal to cat (B) by a result of K.Hess. All the constructions more generally apply to the Ganea category of maps.
Let Vk,n (ℂ) denote the complex Steifel and Grk,n (ℂ) the Grassmann manifolds for 1 ≤ k < n. In this paper, we compute, in terms of the Sullivan minimal models, the evaluation subgroups and, more generally, the relative evaluation subgroups of the fibration p : Vk,k+n (ℂ) → Grk,k+n (ℂ). In particular, we prove that G* (Grk,k+n (ℂ), Vk,k+n (ℂ) ; p) is isomorphic to Grel* (Grk,k+n (ℂ), Vk,k+n (ℂ) ; p) ⊕ G* (Vk,k+n (ℂ)).
Complex Grassmann manifolds $G_{n,k}$ are a generalization of complex projective spaces and have many important features some of which are captured by the $Pl{\ddot{u}}cker$ embedding $f:G_{n,k}{\rightarrow}{\mathbb{C}}P^{N-1}$ where $N=\(^n_k\)$. The problem of existence of cross sections of fibrations can be studied using the Gottlieb group. In a more generalized context one can use the relative evaluation subgroup of a map to describe the cohomology of smooth fiber bundles with fiber the (complex) Grassmann manifold $G_{n,k}$. Our interest lies in making use of techniques of rational homotopy theory to address problems and questions involving applications of Gottlieb groups in general. In this paper, we construct the Sullivan minimal model of the (complex) Grassmann manifold $G_{n,k}$ for $2{\leq}k<n$, and we compute the rational evaluation subgroup of the embedding $f:G_{n,k}{\rightarrow}{\mathbb{C}}P^{N-1}$. We show that, for the Sullivan model ${\phi}:A{\rightarrow}B$, where A and B are the Sullivan minimal models of ${\mathbb{C}}P^{N-1}$ and $G_{n,k}$ respectively, the evaluation subgroup $G_n(A,B;{\phi})$ of ${\phi}$ is generated by a single element and the relative evaluation subgroup $G^{rel}_n(A,B;{\phi})$ is zero. The triviality of the relative evaluation subgroup has its application in studying fibrations with fibre the (complex) Grassmann manifold.
Owing to the notion of a normal adjacency for a digital product in [8], the study of product properties of digital topological properties has been substantially done. To explain a normal adjacency of a digital product more efficiently, the recent paper [22] proposed an S-compatible adjacency of a digital product. Using an S-compatible adjacency of a digital product, we also study product properties of digital topological properties, which improves the presentations of a normal adjacency of a digital product in [8]. Besides, the paper [16] studied the product property of two digital covering maps in terms of the $L_S$- and the $L_C$-property of a digital product which plays an important role in studying digital covering and digital homotopy theory. Further, by using HS- and HC-properties of digital products, the paper [18] studied multiplicative properties of a digital fundamental group. The present paper compares among several kinds of adjacency relations for digital products and proposes their own merits and further, deals with the problem: consider a Cartesian product of two simple closed $k_i$-curves with $l_i$ elements in $Z^{n_i}$, $i{\in}\{1,2\}$ denoted by $SC^{n_1,l_1}_{k_1}{\times}SC^{n_2,l_2}_{k_2}$. Since a normal adjacency for this product and the $L_C$-property are different from each other, the present paper address the problem: for the digital product does it have both a normal k-adjacency of $Z^{n_1+n_2}$ and another adjacency satisfying the $L_C$-property? This research plays an important role in studying product properties of digital topological properties.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.