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FIXED POINT THEOREMS FOR DIGITAL IMAGES

Sang-Eon Han

Abstract. In this paper, as a survey paper, we review many works
related to fixed point theory for digital spaces using Lefschetz fixed
point theorem, Banach fixed point theorem, Nielsen fixed point
theorem and so forth. Besides, we refer some properties of the
fixed point property of a digital k-retract.

1. Introduction

In mathematics, there are many theorems for studying fixed point
theory such as Brouwer fixed point theorem, Lefschetz fixed point theo-
rem, Banach fixed point theorem, Schauder’s fixed point theorem, Nielsen
fixed point theorem and so forth [2, 25, 26]. Indeed, using these the-
orems, we can recognize the existence of a fixed point of a compact
mapping in terms of traces of the induced mappings on the algebraic
topological tools such as homology groups of X. Owing to the usage of
homology groups, it is well known that the fixed point property (FPP for
short) is both a topological and a homotopy invariant [26].

Digital topology has a focus on studying digital topological proper-
ties of nD digital images [27, 11, 23, 24], which has contributed to some
areas of computer sciences such as computer graphics, image process-
ing, mathematical morphology and so forth. Thus an establishment of a
digital version of the ordinary Lefschetz number can be so meaningful.
Thus the recent works [19, 20, 21] studied Brouwer, Nielsen and Banach
fixed point theorems from the viewpoint of digital topology which cor-
rects the papers [7, 8, 9] written by Ege et al.. Furthermore, the recent
works [18, 19, 20, 21] precede many fixed point properties related to
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fixed point theory for digital images. Besides, Ege et al. [7, 8, 9] tried to
formulate digital versions of the ordinary Lefschetz fixed theorem, Ba-
nach fixed point theorem and Schauder’s fixed point theorem. However,
these approaches are due to invoke wrong results (see [5, 18, 19, 20, 21]).
Before referring the work, first of all, we say that a digital image (X, k)
has the FPP [27] if every k-continuous map f : (X, k) → (X, k) has a
fixed point x ∈ X, i.e. f(x) = x.

Motivated by the fixed point theories of [6, 25], Ege et al. [8] tried to
study the Lefschetz number from the viewpoint of digital homotopy the-
ory. To work this out in detail, Ege et al. [8] used a digital k-homotopy
[3], relative digital homotopy [11, 13], digital surface theory [13, 14],
the digital homology group proposed in [1, 8] and so forth. Unlike the
homotopy invariant property of the ordinary Lefschetz number, using A
counterexample to the digital homotopy invariant property of the digital
Lefschetz number (see Example 4.5 of the current paper), we prove that
a digital version of the Lefschetz number in [8] is not a digital homotopy
invariant (see Proposition 4.4 in the present paper).

Even though the works [5, 18, 19, 20, 21] correct many errors in
[7, 8, 9], the current paper explains them in details and corrects some
further errors. Besides, the present paper is based on the presentation of
11th ICFPTA (2015) [19] which firstly pointed out many errors in [7, 9],
Banach fixed point theorem for digital images [20], fixed point theorems
for digital images [21].

Indeed, the posting of an abstract to the international conference held
at the 11th ICFPTA (July 20-25, 2015, Galatasaray University, Istan-
bul, Turkey) [19] started on the date(June 30, 2015). Hence the author
of the present work came to conclusion that the works of [7, 8, 9] have
lots of errors and some usages of several mathematical models already
developed in [13, 14] were proceeded without any citation.

Recently, the works [5, 18, 19, 20, 21] fixed many errors in [7, 8, 9].
Even though the recent paper [9] studied Banach fixed point theorem
for digital images, the recent paper [20] also corrected some errors in [9]
and improved it. Despite of this works, we need to further comment on
the topic. In addition, we need to refer some property of the fixed point
property of a digital k-retract in [7].

The rest of the paper is organized as follows: Section 2 provides basic
notions from digital topology. Section 3 investigates some properties of
digital k-contractibility inherited from a digital k-homotopy and studies
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digital homotopy axiom associated with the digital homology in [1, 4, 8].
Namely, we study that the digital homology does not have the digital
homotopy property. Section 4 proves that a digital version of the Lef-
schetz number in [8] is not a digital homotopy invariant. Owing to this
finding, we correct some errors in [7, 8, 9] and improves the paper (O.
Ege, I. Karaca in The Bulletin of the Belgian Mathematical Society-
Simon Stevin, Applications of the Lefschetz Number to Digital Images,
Vol.21(5) (2014), 823-839). Besides, we need to point out that Ege et
al. [8] used some of figures such as MSC4 [11], MSS6 [13] and MSS′

18

[13, 14] and a digital wedge [11] without citation. Section 5 concludes
the paper with some remarks.

In this paper all digital images (X, k) are assumed to be k-connected
and |X| ≥ 2.

2. Preliminaries

To study the FPP of digital images from the viewpoint of digital
topology, we need to recall some basic notions from digital topology such
as digital k-connectivity, a digital k-neighborhood, digital continuity
and so forth [11, 24, 27]. Let N and R represent the sets of natural
numbers and real numbers, respectively. Let Zn be the set of points in
the Euclidean nD space with integer coordinates, n ∈ N.

To study nD digital images, we will say that two distinct points
p, q ∈ Zn are k-(or k(m,n)-)adjacent if they satisfy the following [11]
(see also [15, 16]):
For a natural number m, 1 ≤ m ≤ n, two distinct points

p = (p1, p2, · · · , pn) and q = (q1, q2, · · · , qn) ∈ Zn,

are k(m,n)-(k-, for brevity)adjacent if

at most m of their coordinates differs by ± 1, and all others coincide.
(2.1)

Concretely, these k(m,n)-adjacency relations of Zn are determined ac-
cording to the numbers m,n ∈ N [11] (see also [13]).

In terms of the operator (2.1), the k-adjacency relations of Zn are
obtained [11] (see also [15, 16]) as follows:

k := k(m,n) =

n−1∑

i=n−m

2n−iCn
i , (2.2)
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where Cn
i = n!

(n−i)! i! .

For instance, [27, 11, 15]

(n,m, k) ∈





(2, 2, 8), (2, 1, 4);

(3, 3, 26), (3, 2, 18), (3, 1, 6);

(4, 4, 80), (4, 3, 64), (4, 2, 32), (4, 1, 8).





A. Rosenfeld [27] called a set X ⊂ Zn with a k-adjacency a digital
image, denoted by (X, k). Indeed, to follow a graph theoretical approach
of studying nD digital images [11, 22, 27], both the k-adjacency relations
of Zn of (2.2) and a digital k-neighborhood are used to study digital
images [11, 12]. More precisely, using the k-adjacency relations of Zn

of (2.2), we say that a digital k-neighborhood of p in Zn is the set
[27] Nk(p) := {q | p is k-adjacent to q}. Furthermore, we often use the
notation [24]

N∗
k (p) := Nk(p) ∪ {p}.

For a, b ∈ Z with a � b, the set [a, b]Z = {n ∈ Z | a ≤ n ≤ b} with
2-adjacency is called a digital interval [24]. Besides, for a k-adjacency
relation of Zn, a simple k-path with l+1 elements in Zn is assumed to be
an injective sequence (xi)i∈[0,l]Z ⊂ Zn such that xi and xj are k-adjacent
if and only if | i − j | = 1 [24]. If x0 = x and xl = y, then the length of
the simple k-path, denoted by lk(x, y), is the number l. A simple closed

k-curve with l elements in Zn, denoted by SCn,l
k [24, 11] (see Figure

1(a)), is the simple k-path (xi)i∈[0,l−1]Z , where xi and xj are k-adjacent
if and only if either j = i+1(mod l) or i = j+1(mod l), l ≥ 4 [24]. For
a digital image (X, k), as a generalization of N∗

k (p) [24] the digital k-
neighborhood of x0 ∈ X with radius 1 is defined in X to be the following
subset of X [11, 14]

Nk(x, 1) = N∗
k (x) ∩X. (2.3)

In Section 4, in relation to the study of Lefschetz fixed point the-
orem, we use the notions of both a digital simplicial complex derived
from a digital image (X, k) [12, 14, 1, 8] and a digital homology group
Hk

q (X) introduced in [1] (for more details, see [1, 7, 8]). In terms of
this approach, the following q-th digital simplicial group is established
in [1, 8].

Hk
q (X) := Zk

q (X)/Bk
q (X) (2.4)

Lemma 2.1. [1, 4] For the digital images ([0, l]Z, 2), SC
n,l
k and a

singleton, we obtain the following:
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(1)

H2
q ([0, l]Z) =

{
Z, q = 0;

0, q 6= 0.

(2)

Hk
q (SC

n,l
k ) =

{
Z, q ∈ {0, 1};
0, q /∈ {0, 1}.

(3) Hk
q ({x0}) is isomorphic to Z if q = 0, and it is trivial if q 6= 0.

3. Some properties of digital k-contractibility and digital ho-
mology

To study fixed point theory for digital images, the present paper
follows the Rosenfeld model [27]. Since digital continuity is an essential
notion in digital topology, the digital continuity of a map f : (X, k0) →
(Y, k1) was established in [27] by saying that f maps every k0-connected
subset of (X, k0) into a k1-connected subset of (Y, k1). Motivated by
this approach, since the digital k-neighborhood of (2.3) is very useful in
digital topology, the digital continuity of maps between digital images
was represented with the following version, which can be substantially
used to study digital images (X, k) in Zn.

Proposition 3.1. [11, 14] Let (X, k0) and (Y, k1) be digital images
in Zn0 and Zn1 , respectively. A function f : (X, k0) → (Y, k1) is digi-
tally (k0, k1)-continuous if and only if for every x ∈ X f(Nk0(x, 1)) ⊂
Nk1(f(x), 1).

Hereafter, we will use the term “(k0, k1)-continuous” for short instead
of “digitally (k0, k1)-continuous”. In Proposition 3.1 in case n0 = n1 and
k0 = k1 := k, the map f is called a “k-continuous” map instead of a
“(k, k)-continuous” map.

According to Proposition 3.1, we see that the point y ∈ Nk0(x, 1) is
mapped into the point f(y) ∈ Nk1(f(x), 1), which implies that for the
points x, y which are k0-adjacent a (k0, k1)-continuous map f has the
property

f(x) = f(y) or f(y) ∈ Nk1(f(x)) ∩ Y.

Since an nD digital image (X, k) is viewed as a set X ⊂ Zn with one
of the k-adjacency relations of (2.2) (or a digital k-graph in [11, 14]),
in relation to the classification of nD digital images, we use the term
a (k0, k1)-isomorphism as in [12] (see also [22]) rather than a (k0, k1)-
homeomorphism as in [6].
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Definition 1. [3, 22] (see also [12, 14]) Consider two digital images
(X, k0) and (Y, k1) in Zn0 and Zn1 , respectively. Then a map h : X → Y
is called a (k0, k1)-isomorphism if h is a (k0, k1)-continuous bijection and
further, h−1 : Y → X is (k1, k0)-continuous.

In Definition 2, in case n0 = n1 and k0 = k1 := k, we call it a k-
isomorphism [11]. Furthermore, we denote by X ≈k Y a k-isomorphism
from X to Y [22] (see also [12]).

To study a digital topological invariant of the digital homology re-
ferred in Section 2, the following was established.

Proposition 3.2. [1, 8] If h : (X, k0) → (Y, k1) is a (k0, k1)-isomorphism,
then the induced homomorphism h∗ : Hk0

q (X) → Hk1
q (Y ), q ≥ 0 is an

isomorphism.

To study the notion of k-contractibility of a digital image (X, k), the
following digital homotopy was used in [8].

Definition 2. [23, 3] Let (X, k0) and (Y, k1) be digital images. Let
f, g : X → Y be (k0, k1)-continuous functions. Suppose there exist
m ∈ N and a function H : X × [0,m]Z → Y such that
• for all x ∈ X,H(x, 0) = f(x) and H(x,m) = g(x);
• for all x ∈ X, the induced function Hx : [0,m]Z → Y given by
Hx(t) := H(x, t) for all t ∈ [0,m]Z is (2, k1)-continuous; and
• for all t ∈ [0,m]Z, the induced function Ht : X → Y given by Ht(x) :=
H(x, t) for all x ∈ X is (k0, k1)-continuous.
Then we say that H is a (k0, k1)-homotopy between f and g.

When f and g are (k0, k1)-homotopic in Y , we denote by f '(k0,k1) g
the homotopic relation [3]. In addition, if n0 = n1 and k0 = k1, then we
say that f and g are k0-homotopic in Y and use the notation f 'k0 g.

To study the FPP of digital images, the following k-contractibility
was used in [8].

Definition 3. [3] Let (X, k0) and (Y, k1) be digital images. A (k0, k1)-
continuous map is digitally nullhomotopic if f is (k0, k1)-homotopic in
(Y, k1) to a constant map. A digital image (X, k) is a k-contractible if
its identity map is digitally nullhomotopic.

To study a digital version of the Lefschetz number for digital images
(X, k) such as digital k-curves and digital images in Zn, n ∈ {2, 3}, we
need the following:
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Figure 1. (a) Simple closed 4-curves SC2,4
4 [8] and

SC2,8
4 [11], and a simple closed 8-curve MSC8 := SC2,4

8
[3]; (b) The digital image (MSS′

6, 6) [8].

Theorem 3.3. (1) MSS′
6 := {ci | i ∈ [0, 7]Z} is 6-contractible.

(2) MSC4 := SC2,8
4 is not 4-contractible [11].

(3) Both SC2,8
4 and SC2,4

8 := MSC ′
8 are 8-contractible [3, 11].

Proof: Let us prove 6-contractibility of MSS′
6 as follows:

consider the map H : MSS′
6 × [0, 3]Z → MSS′

6 (see Figure 2) given by





H(ci, 0) = ci, i ∈ [0, 7]Z;

H(c1, 1) = c0, H(c2, 1) = c3,

H(c5, 1) = c4, H(c6, 1) = c7,

H(ci, 1) = ci, i ∈ {0, 3, 4, 7};
H(ci, 2) = c0, i ∈ {0, 1, 2, 3},
H(ci, 2) = c4, i ∈ {4, 5, 6, 7};
H(ci, 3) = c0, i ∈ [0, 7]Z.

Then it is clear that the map H is a 6-homotopy between 1MSS′
6
and

the constant map C{c0}, which implies that MSS′
6 is 6-contractible and

finally completes the proof.
In addition, using the method similar to the proof of the 6-contractibility
of MSS′

6, we see that SC
2,4
8 is also 8-contractible [6, 11]. The other cases

(2) and (3) were already proved in [3, 11, 13, 14]. ¤
To study the non-homotopy property of digital homology, we need to

recall homology groups of a digital image MSS′
6 ⊂ Z3, as follows:
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Figure 2. Explanation of a process of 6-contractibility
of MSS′

6 [13].

Lemma 3.4. [1, 8] For the digital image MSS′
6 ⊂ Z3, we obtain

H6
q (MSS′

6) =





Z, q = 0;

Z5, q = 1;

0, q /∈ {0, 1}.

Theorem 3.5. [21] The digital homology does not have the digital
homotopy property.

Before proving this theorem, we say “the digital homotopy property
related to the digital homology” as follows: for two (k0, k1)-continuous
map f, g : (X, k0) → (Y, k1) if f is (k0, k1)-homotopic to g, then the
induced homomorphisms f∗, g∗ : Hk0∗ (X) → Hk1∗ (Y ) coincide.

Proof: It suffices to suggest examples explaining that the digital ho-
mology does not have the digital homotopy property in a way different
from that of [21].
Owing to the 6-contractibility of MSS′

6 := (ci)i∈[0,7]Z (see Figure 2) (see
Theorem 3.3(1)), we see that 1MSS′

6
is 6-homotopic to the constant map

C{c0}. However, by Lemmas 2.1 and 3.4, we obtain

H6
q (MSS′

6) 6= H6
q ({c0}).

As a result, while 1MSS′
6
is 6-homotopic to the constant map C{c0}, their

digital homology groups of MSS′
6 and the singleton {c0} are not equal.

¤
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4. Digital non-homotopy invariant property of the Lefschetz
number for digital images and Banach fixed point theo-
rem for digital spaces

To study the non-homotopy invariant of Lefschetz number, we need
to recall the notion of a digital wedge firstly introduced in [11] with a
compatible k-adjacency of a digital wedge sum, as follows.

Definition 4. [11] (see also [17]) For pointed digital images ((X,x0), k0)
in Zn0 and ((Y, y0), k1) in Zn1 , the wedge sum of (X, k0) and (Y, k1),
written (X ∨ Y, (x0, y0)), is the digital image in Zn, n = max{n0, n1},

{(x, y) ∈ X × Y | x = x0 or y = y0} (4.1)

with the following compatible k(m,n)(or k)-adjacency relative to both
(X, k0) and (Y, k1), and the only one point (x0, y0) in common such that

(W1) the k(m,n) (or k)-adjacency is determined by the numbers m
and n with m = max{m0,m1} satisfying (W1 − 1) below, where the
numbers mi are taken from the ki(or k(mi, ni))-adjacency relations of
the given digital images ((X,x0), k0) and ((Y, y0), k1), i ∈ {0, 1}.

(W 1-1) In view of (4.1), induced from the projection maps, we can
consider the natural projection maps

WX : (X∨Y, (x0, y0)) → (X,x0) and WY : (X∨Y, (x0, y0)) → (Y, y0).

In relation to the establishment of a compatible k-adjacency of the digital
wedge sum (X ∨ Y, (x0, y0)), the following restriction maps of WX and
WY on (X ×{y0}, (x0, y0)) ⊂ (X ∨Y, (x0, y0)) and ({x0}×Y, (x0, y0)) ⊂
(X ∨ Y, (x0, y0)) satisfy the following properties, respectively:{
(1)WX |X×{y0} : (X × {y0}, k) → (X, k0) is a (k, k0)-isomorphism; and

(2)WY |{x0}×Y : ({x0} × Y, k) → (Y, k1) is a (k, k1)-isomorphism.

(W2) Any two distinct elements x(6= x0) ∈ X ⊂ X ∨ Y and y(6=
y0) ∈ Y ⊂ X ∨ Y are not k(m,n) (or k)-adjacent to each other.

It is obvious that (X ∨ Y, k) is k-isomorphic to (Y ∨X, k).
Although Ege et al. [8] studied a digital version of the Lefschetz

number for digital images, this section makes some errors in the paper
fixed and improves the paper. Indeed, Lefschetz [25] introduced the
Lefschetz number of a map and proved that if the number is nonzero,
then the map has a fixed point. For a formal statement of the theorem,
let f : X → X be a continuous map from a compact triangulable space
X to itself. Define the Lefschetz number λ(f) of f by

λ(f) := Σk≥0(−1)kTr(f∗ |Hk(X,Q)) (4.2)
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the alternating (finite) sum of the matrix traces of the linear maps in-
duced by f on the Hk(X,Q), the singular homology of X with rational
coefficients. A simple version of the Lefschetz fixed-point theorem states:
if λ(f) 6= 0, then f has at least one fixed point, i.e. there exists at least
one point x ∈ X such that f(x) = x.
Motivated by the property of (4.2), Ege et al. [7] proposed a formula
(see also Definition 3.3 of [8]) using the digital homology proposed in
[1, 8], as follows:

Definition 5. [7] For a k-continuous map f : (X, k) → (X, k), where
(X, k) is a digital image whose digital homology groups are finitely gen-
erated and vanish above some dimension, the Lefschetz number λ(f) is
defined as follows:

λ(f) = Σ∞
i=0(−1)itr(f∗), (4.3)

where f∗ : Hk
i (X) → Hk

i (X) is the induced homomorphism by the given
map f , where X is the digital simplex inherited from the digital image
(X, k).

Using the digital simplex (see Definition 1) from a digital image
(X, k), Ege et al. [7] established the following which are essential parts
of [7, 8] (see Theorems 4.1 and 4.2 below).

Theorem 4.1. (1) (Theorem 3.3 of the paper [7] and Theorem 3.4
of [8]) If (X, k) is a finite digital simplicial complex, or the retract of
some finite digital simplicial complex, and f : (X, k) → (X, k) is a k-
continuous map with λ(f) 6= 0, then f has a fixed point.

(2) (Theorem 3.5 of [8]) Let (X, k) be a digital image. If a k-
continuous map f : (X, k) → (X, k) has λ(f) 6= 0, then any k-continuous
map k-homotopic to f has a fixed point.

However, this theorem is invalid (see [5, 19, 21]. Besides, Ege et al.
[7, 8] studied the FPP of a digital k-retract (see Theorem 3.11 of [7]),
as follows:

Theorem 4.2. [7] Let (A, k) be a k-retract of (X, k). If (X, k) has
the FPP, then (A, k) has also the FPP.

Basically this assertion is very trivial. However, this case can be true
only the trivial case, as follows:

Remark 4.3. Due to the study of [27], it is clear that only the digital
image (X, k) with |X| = 1 has the FPP. Hence, to support Theorem 4.2,
we see that both (A, k) and (X, k) are all singletons.
However, we see that in another digital topological category instead of
the Rosenfeld model this property may have nontrivial cases.
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Unlike the homotopy invariant property of the ordinary fixed point
theorem, we obtain the following:

Proposition 4.4. The non-homotopy property of the digital homol-
ogy (see Theorem 3.5) implies invalidity of Theorem 4.1.

Let us now confirm the invalidity of Theorem 4.1 by using a coun-
terexample to Theorem 4.1 (see Example 4.5), which guarantees Propo-
sition 4.4.

Example 4.5. Let us consider (X, 8) which is a wedge sum with
an compatible 8-adjacency (see Figure 3), where X := {xi | i ∈ [0, 7]Z}.
Then, by Theorem 3.3(3), it is obvious that (X, 8) is 8-contractible. This
implies that the identity map 1X is 8-homotopic to the constant map
C{x0}, where x0; = (0, 0).
Let us now investigate the Lefschetz number of 1X . Indeed, we see that

λ(1X) = Σ∞
i=0(−1)itr((1X)∗) = 1− 0 + 2 + · · · = 3. (4.4),

because H8
q (X) is isomorphic to Z × Z [10]. Furthermore, consider the

8-continuous self-map g of (X, 8) in such a way:

g(xi) = x0, i ∈ [1, 7]Z and for g(x0) = x1 := (1, 1).

Thus and we obtain
1X '8 g, (4.5)

which satisfies the hypothesis of Theorem 4.1.
However, it is clear that

λ(g) = Σ∞
i=0(−1)itr(g∗) = 1− 0 + · · · = 1. (4.6).

In addition, the map g has no fixed point, by (4.2)-(4.6) contrary to
Theorem 4.1.

As a result we obtain the following:

Proposition 4.6 (Invalidity of a digital homotopy invariant of the
digital Lefschetz number proposed in [8]). In view of Theorem 3.5,
Proposition 4.4 and Example 4.5, it turns out that the digital Lefschetz
number is not a digital homotopy invariant, correcting an error in [7, 8].

Remark 4.7. In view of Proposition 4.4, although the recent pa-
pers [7, 8] studied Lefschetz fixed point theorem and Nielsen fixed point
theorem for digital images, this kind of approach is invalid. Besides,
although the recent paper [9] also studied Banach fixed point theorem
for digital images, the recent work [18] corrected some errors in [7, 8, 9]
and improved it.
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(1, 1)


(-1, -1)


(-2, 0)
 (2, 0)
(0, 0)


Figure 3. Explanation of the 8-contractibility of the
wedge sum (X, 8).

5. Further remarks and works

We have proved the non-homotopy invariant property of digital ho-
mology. Owing to the result, it turns out that a digital version of the
ordinary Lefschetz number is insufficient for studying the FPP of digi-
tal images and further, the digital homology introduced in [1, 8] is not
sufficient for studying the FPP of digital images.
As a further work, using various properties of digital surfaces, we need
to further study the FPP of digital k-surfaces. In addition, after devel-
oping a new digital topological structure, we need to study its FPP. In
spite of the study of fixed point theory for contractible space in digital
topological sense, we need to further study non-trivial cases.
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