References
- H. Arslan, I. Karaca, A. Oztel, Homology groups of n-dimensional digital images XXI. Turkish National Mathematics Symposium (2008) 1-13.
- S. Banach, Sur les operations dans les ensembles abstraits et leurs applications aux equations integrales, Fund. Math. 3 (1922) 133-181. https://doi.org/10.4064/fm-3-1-133-181
- L. Boxer, A classical construction for the digital fundamental group, Jour. of Mathematical Imaging and Vision 10 (1999) 51-62. https://doi.org/10.1023/A:1008370600456
- L. Boxer, I. Karaca, A. Oztel, Topological invariants in digital images, Journal of Mathematical Sciences: Advances and Applications 11 (2011) 109-140.
- L. Boxer, O. Ege, I. Karaca, J. Lopez, Digital Fixed Points, Approximate Fixed Points, and Universal Functions, preprint, available at http://arxiv.org/abs/1507.02349.
- R.F. Brown, The Nielsen number of a fiber map, Ann. Math. 85 (1967) 483-493. https://doi.org/10.2307/1970354
- O. Ege, I. Karaca, Lefschetz fixed point theorem for digital images, Fixed Point Theorey and Applications (2013) 2013:253; doi:10.1186/1687-1812-2013-253.
- O. Ege, I. Karaca, Applications of the Lefschetz Number to Digital Images, The Bulletin of the Belgian Mathematical Society-Simon Stevin 21(5) (2014) 823-839.
- O. Ege, I. Karaca, Banach fixed point theorem for digital images, Journal of Nonlinear Sciences and Applications 8 (2015) 237-245.
- O. Ege, I. Karaca, M. E. Ege, Relative homology groups of digita images, Appl. Math. Inf. Sci. 8(5) (2014), 2337-2345. https://doi.org/10.12785/amis/080529
- S.E. Han, Non-product property of the digital fundamental group, Information Sciences 171(1-3) (2005) 73-91. https://doi.org/10.1016/j.ins.2004.03.018
- S.E. Han, On the simplicial complex stemmed from a digital graph, Honam Mathematical Journal 27(1) (2005) 115-129.
- S.E. Han, Connected sum of digital closed surfaces, Information Sciences 176(3) (2006) 332-348. https://doi.org/10.1016/j.ins.2004.11.003
- S.E. Han, Digital fundamental group and Euler characteristic of a connected sum of digital closed surfaces, Information Sciences 177(16) (2006) 3314-1329. https://doi.org/10.1016/j.ins.2006.12.013
-
S.E. Han, The k-homotopic thinning and a torus-like digital image in
$Z^n$ , Journal of Mathematical Imaging and Vision 31(1) (2008) 1-16. https://doi.org/10.1007/s10851-007-0061-2 -
S.E. Han, KD-(
$k_{0},\;k_{1}$ )-homotopy equivalence and its applications, Journal of Korean Mathematical Society 47(5) (2010) 1031-1054. https://doi.org/10.4134/JKMS.2010.47.5.1031 - S.E. Han, Ultra regular covering spaces and its automorphism group, Int. J. Appl. Math. Comput. Sci. 20(4)(2010), 699-710. https://doi.org/10.2478/v10006-010-0053-z
- S.E. Han, Personal communication with the authors of [4] on Euler characteristic for digital images, (June 28, 2015).
- S.E. Han, Digital version of the fixed point theory, Proceedings of 11th ICFPTA (Abstracts) (2015) p.60.
- S.E. Han, Banach fixed point theorem from the viewpoint of digital topology, Journal of Nonlinear Sciences and Applications 9(3) (2016) 895-905. https://doi.org/10.22436/jnsa.009.03.19
- S.E. Han, The Lefschetz number for digital images with the same digital homotopy type, Fixed Point Theorey and Applications, submitted.
-
S.E. Han and B.G. Park, Digital graph (
$k_{0},\;k_{1}$ )-isomorphism and its applications, http://atlas-conferences.com/c/a/k/b/36.htm (2003). - E. Khalimsky, Motion, deformation, and homotopy in finite spaces, Proceedings IEEE International Conferences on Systems, Man, and Cybernetics (1987) 227-234.
- T. Y. Kong, A. Rosenfeld, Topological Algorithms for the Digital Image Processing, Elsevier Science, Amsterdam, 1996.
- S. Lefschetz, Intersections and transformations of complexes and manifolds, Trans. Amer. Math. Soc. 28(1) (1926) 1-49. https://doi.org/10.1090/S0002-9947-1926-1501331-3
- S. Lefschetz, On the fixed point formula, Ann. of Math. 38(4) (1937) 819-822. https://doi.org/10.2307/1968838
- A. Rosenfeld, Continuous functions on digital pictures, Pattern Recognition Letters 4 (1986) 177-184. https://doi.org/10.1016/0167-8655(86)90017-6
- E.H. Spanier, Algebraic Topology, McGraw-Hill Inc., New York, 1966.
Cited by
- Contractibility and fixed point property: the case of Khalimsky topological spaces vol.2016, pp.1, 2016, https://doi.org/10.1186/s13663-016-0566-8
- The fixed point property of an M -retract and its applications vol.230, 2017, https://doi.org/10.1016/j.topol.2017.08.026
- DIGITAL HOMOLOGY GROUPS OF DIGITAL WEDGE SUMS vol.38, pp.4, 2016, https://doi.org/10.5831/HMJ.2016.38.4.819