• Title/Summary/Keyword: homotopy group

Search Result 70, Processing Time 0.023 seconds

SEMIALGEBRAIC G CW COMPLEX STRUCTURE OF SEMIALGEBRAIC G SPACES

  • Park, Dae-Heui;Suh, Dong-Youp
    • Journal of the Korean Mathematical Society
    • /
    • v.35 no.2
    • /
    • pp.371-386
    • /
    • 1998
  • Let G be a compact Lie group and M a semialgebraic G space in some orthogonal representation space of G. We prove that if G is finite then M has an equivariant semialgebraic triangulation. Moreover this triangulation is unique. When G is not finite we show that M has a semialgebraic G CW complex structure, and this structure is unique. As a consequence compact semialgebraic G space has an equivariant simple homotopy type.

  • PDF

APPROXIMATE FIBRATIONS AND NON-APPROXIMATE FIBRATIONS IN PL CATEGORY

  • Im, Young-Ho
    • Communications of the Korean Mathematical Society
    • /
    • v.11 no.4
    • /
    • pp.1077-1085
    • /
    • 1996
  • This paper provides examples which can not be approximate fibrations and shows that if $N^n$ is a closed aspherical manifold, $\pi_1(N)$ is hyperhophian, normally cohophian, and $\pi_1(N)$ has no nontrivial Abelian normal subgroup, then the product of $N^n$ and a sphre $S^m$ satisfies the property that all PL maps from an orientable manifold M to a polyhedron B for which each point preimage is homotopy equivalent to $N^n \times S^m$ necessarily are approximate fibrations.

  • PDF

Finiteness properties of some poincare duality groups

  • Lee, Jong-Bum;Park, Chan-Young
    • Journal of the Korean Mathematical Society
    • /
    • v.32 no.1
    • /
    • pp.33-40
    • /
    • 1995
  • A space Y is called finitely dominated if there is a finite complex K such that Y is a retract of K in the homotopy category, i.e., we require maps $i : Y \longrightarrow K and r : K \longrightarrow Y with r \circ i \simeq idy$. The following questions are very classical in topology.

  • PDF

The reidemeister numbers on transformation groups

  • Ahn, Soo-Youp;Chung, In-Jae
    • Communications of the Korean Mathematical Society
    • /
    • v.11 no.2
    • /
    • pp.445-455
    • /
    • 1996
  • In this paper we study the Reidemeister number $R(f_G)$ for a self-map $f_G : (X, G) \to (X, G)$ of the transformation group (X,G), as an extenstion of the Reidemeister number R(f) for a self-map $f : X \to X$ of a topological space X.

  • PDF

FREE AND NEARLY FREE CURVES FROM CONIC PENCILS

  • Dimca, Alexandru
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.3
    • /
    • pp.705-717
    • /
    • 2018
  • We construct some infinite series of free and nearly free curves using pencils of conics with a base locus of cardinality at most two. These curves have an interesting topology, e.g. a high degree Alexander polynomial that can be explicitly determined, a Milnor fiber homotopy equivalent to a bouquet of circles, or an irreducible translated component in the characteristic variety of their complement. Monodromy eigenspaces in the first cohomology group of the corresponding Milnor fibers are also described in terms of explicit differential forms.

NECESSARY AND SUFFICIENT CONDITIONS FOR CODIMENSION-k MAPS TO BE APPROXIMATE FIBRATIONS

  • Im, Young-Ho
    • Communications of the Korean Mathematical Society
    • /
    • v.18 no.2
    • /
    • pp.367-374
    • /
    • 2003
  • Let N be a Closed n-manifold with residually finite, torsion free $\pi$$_1$(N) and finite H$_1$,(N). Suppose that $\pi$$\_$k/(N)=0 for 1 < k < n-1. We show that N is a codimension-n PL fibrator if and only if N does not cover itself regularly and cyclically up to homotopy type, provided $\pi$$_1$(N) satisfies a certain condition.

A Parallel Iterative Algorithm for Solving The Eigenvalue Problem of Symmetric matrices

  • Baik, Ran
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.4 no.2
    • /
    • pp.99-110
    • /
    • 2000
  • This paper is devoted to the parallelism of a numerical matrix eigenvalue problem. The eigenproblem arises in a variety of applications, including engineering, statistics, and economics. Especially we try to approach the industrial techniques from mathematical modeling. This paper has developed a parallel algorithm to find all eigenvalues. It is contributed to solve a specific practical problem, a vibration problem in the industry. Also we compare the runtime between the serial algorithm and the parallel algorithm for the given problems.

  • PDF

CLASSIFICATION OF EQUIVARIANT VECTOR BUNDLES OVER REAL PROJECTIVE PLANE

  • Kim, Min Kyu
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.24 no.2
    • /
    • pp.319-335
    • /
    • 2011
  • We classify equivariant topoligical complex vector bundles over real projective plane under a compact Lie group (not necessarily effective) action. It is shown that nonequivariant Chern classes and isotropy representations at (at most) three points are sufficient to classify equivariant vector bundles over real projective plane except one case. To do it, we relate the problem to classification on two-sphere through the covering map because equivariant vector bundles over two-sphere have been already classified.

Existence of subpolynomial algebras in $H^*(BG,Z/p)$

  • Lee, Hyang-Sook;Shin, Dong-Sun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.34 no.1
    • /
    • pp.1-8
    • /
    • 1997
  • Let G be a finiteg oroup. We denote BG a classifying space of G, which a contractible universal principal G bundle EG. The stable type of BG does not determine G up to isomorphism. A simple example [due to N. Minami]is given by $Q_{4p} \times Z/2$ and $D_{2p} \times Z/4$ where ps is an odd prime, $Q_{4p} is the generalized quarternion group of order 4p and $D_{2p}$ is the dihedral group of order 2p. However the paper [6] gives us a necessary and sufficient condition for $BG_1$ and $BG_2$ to be stably equivalent localized et pp. The local stable type of BG depends on the conjegacy classes of homomorphisms from the p-groups Q into G. This classification theorem simplifies if G has a normal sylow p-subgroup. Then the stable homotopy type depends on the Weyl group of the sylow p-subgroup.

  • PDF