FINITENESS PROPERTIES OF SOME POINCARÉ DUALITY GROUPS

JONG BUM LEE* AND CHAN-YOUNG PARK**

A space Y is called *finitely dominated* if there is a finite complex K such that Y is a retract of K in the homotopy category, i.e., we require maps $i: Y \to K$ and $r: K \to Y$ with $r \circ i \simeq \mathrm{id}_Y$. The following questions are very classical in topology.

QUESTION 1. Does a finitely dominated K(G,1) space have the homotopy type of a finite complex?

QUESTION 2. Suppose that we have a torsion-free, finite extension $1 \to G' \to G \to Q \to 1$ of groups, and suppose that G' acts freely and simplicially on a contractible simplicial complex X' with quotient a finite complex. Can one extend the G'-action on X' to a free and simplicial G-action on X', or find a contractible free G-simplicial complex X so that the quotient X/G has the homotopy type of a finite complex?

We can change the above topological questions to algebraic ones. Let k denote a commutative ring with unit $1 \neq 0$. A group G is called of type FP over k or k is a kG-module of type FP if the trivial G-module k admits a finite projective resolution over kG, i.e., there is an exact sequence of kG-modules

$$0 \longrightarrow P_n \longrightarrow \cdots \longrightarrow P_0 \longrightarrow k \longrightarrow 0$$

with each P_i finitely generated projective. A group G is of type FL over k if k admits a finite free resolution over kG. Clearly the groups

Received August 20, 1993.

¹⁹⁹¹ Mathematics Subject Classification: 57S25, 18G20.

Key words and phrases: Groups of type FP, Poincaré duality group, Hattori-Stallings rank.

The present studies were supported in part by the Basic Science Research Institute program, Ministry of Education, 1994, Project No. BSRI-94-1422^(*) and BSRI-94-1409^(**), and by TGRC-KOSEF^{(*),(**)}.

of type FL are groups of type FP. Some examples of groups of type FP over \mathbb{Z} or FL over \mathbb{Z} can be obtained using topology, cf. [2]:

- (a) If there exists a K(G,1) which is a finite complex, then G is of type FL over \mathbb{Z} .
- (b) If there exists a finitely dominated K(G, 1), then G is of type FP over \mathbb{Z} .
- (c) If G is a finitely presented group, then the converses of (a) and (b) are true.

When we take the algebraic point of view Question 1 is following: There are no known examples of groups of type FP over \mathbb{Z} which are not of type FL over \mathbb{Z} . Algebraically Question 2 means that if G' is of type FL over \mathbb{Z} it is not known whether G is of type FL over \mathbb{Z} .

In this paper we will be concerned with the above algebraic situation, which is known as Serre's Conjecture ([6, p.85]), for the groups of type FP over \mathbb{Q} or FL over \mathbb{Q} . We will show that the Fuchsian groups $\langle x_1, \dots, x_q \mid x_i^{n_i} = \prod x_j = 1 \rangle$, where either q > 3 or q = 3 and $\frac{1}{n_1} + \frac{1}{n_2} + \frac{1}{n_3} \leq 1$, are of type FP over \mathbb{Q} , but not of type FL over \mathbb{Q} (see Example 12).

DEFINITION 1. The cohomological dimension of G over k, denoted $\operatorname{cd}_k G$, is defined as follows: $\operatorname{cd}_k G \leq n$ if $H^i(G; M) = 0$ for all i > n and all kG-module M. Clearly if G is of type FP over k, then $\operatorname{cd}_k G < \infty$.

LEMMA 2. Let $\Lambda = kG$ and $\Lambda^{(n)}$ be the free kG-module of rank n. Suppose G has a partial free resolution of the form

$$\Lambda^{(n)} \xrightarrow{\alpha} \Lambda^{(n+1)} \xrightarrow{\beta} k \longrightarrow 0.$$

Then

$$0 \longrightarrow \Lambda^{(n)} \xrightarrow{\alpha} \Lambda^{(n+1)} \xrightarrow{\beta} k \longrightarrow 0$$

is a resolution for G and hence G is of type FL over k with $\operatorname{cd}_k(G) \leq 1$.

Proof. We first assert that there is a Λ -basis $\{x_0, x_1, \dots, x_n\}$ of $\Lambda^{(n+1)}$ such that $\beta(x_0) = 1$ and $\beta(x_i) = 0$ for $i = 1, 2, \dots, n$. Choose any Λ -basis $\{y_0, y_1, \dots, y_n\}$ of $\Lambda^{(n+1)}$. Let $a_i = \beta(y_i)$ and let $\bar{y}_0, \bar{y}_1, \dots, \bar{y}_n$ generate $k^{(n+1)}$. Consider $\beta: k^{(n+1)} \to k$ defined by $\bar{\beta}(\bar{y}_i) = a_i$ for all $i = 0, 1, \dots, n$. Then $\bar{\beta}$ is surjective. As k is k-free, $\bar{\beta}$ is split. Hence there exists a matrix M with entries in k of degree n+1

such that $M\bar{y}_0, M\bar{y}_1, \dots, M\bar{y}_n$ generate $k^{(n+1)}$ and $\bar{\beta}(M\bar{y}_i) = 1$ or 0 according as i = 0 or $i \neq 0$. Put $x_i = My_i$ for all $i = 0, 1, \dots, n$. Then $\{x_0, x_1, \dots, x_n\}$ is a Λ -basis of $\Lambda^{(n+1)}$ such that $\beta(x_0) = 1$ and $\beta(x_i) = 0$ for $i = 1, 2, \dots, n$.

Thus it follows that $\Lambda^{(n+1)} = \Lambda(x_0) \oplus \Lambda(x_1) \oplus \cdots \oplus \Lambda(x_n)$. Let $I_G = \ker\{\beta|_{\Lambda(x_0)} : \Lambda(x_0) \to k\}$. Then $\ker(\beta) = I_G \oplus \Lambda(x_1) \oplus \Lambda(x_2) \oplus \cdots \oplus \Lambda(x_n) = I_G \oplus \Lambda^{(n)}$. Since $\operatorname{im}(\alpha) = \ker(\beta)$, the composite $\pi \circ \alpha : \Lambda^{(n)} \xrightarrow{\alpha} \operatorname{im}(\alpha) = \ker(\beta) = I_G \oplus \Lambda^{(n)} \xrightarrow{\pi} \Lambda^{(n)}$, where π is the projection onto $\Lambda^{(n)}$, is well-defined and surjective. Let $N = \ker(\pi \circ \alpha)$. Then we have a split short exact sequence $0 \to N \to \Lambda^{(n)} \xrightarrow{\pi \circ \alpha} \Lambda^{(n)} \to 0$ as $\Lambda^{(n)}$ is free. Hence $\Lambda^{(n)} \cong \Lambda^{(n)} \oplus N$. By a result of Kaplansky (cf. [4, 5]), N = 0; thus $\pi \circ \alpha$ is an isomorphism and α is an injection. This proves our lemma. \square

DEFINITION 3. A group G of type FP over k is called a duality group of dimension n over k if $H^i(G; M) \cong H_{n-i}(G; D \otimes_k M)$ for all $i \in \mathbb{Z}$ and kG-module M. Here, $D = H^n(G; kG)$ as an kG-module and G acts diagonally on $D \otimes_k M$: $g \cdot (d \otimes m) = g \cdot d \otimes g \cdot m$. When D = k, the group G is called a Poincaré duality group. The Poincaré duality group G is called orientable if it acts trivially on D = k; otherwise, it is called non-orientable.

Suppose G is a duality group over k of dimension n. The duality isomorphisms yield that $H^i(G;kG)\cong H_{n-i}(G;D\otimes_k kG)=H_{n-i}(\{1\};D)$ (Shapiro's lemma, [2,p,73])=0 if $i\neq n$ and D if i=n and $\mathrm{cd}_k G\leq n$. In particular, $\mathrm{cd}_k G=n$. Moreover D is a flat k-module. For, if $0\to L'\to L\to L''\to 0$ is an exact sequence of k-modules then $0\to L'\otimes_k kG\to L\otimes_k kG\to L''\otimes_k kG\to 0$ is exact and gives the exact sequence $H^{n-1}(G;L''\otimes_k kG)\to H^n(G;L\otimes_k kG)\to H^n(G;L\otimes_k kG)$. Since $H^i(G;L^*\otimes_k kG)\cong H_{n-i}(G;D\otimes_k L^*\otimes_k kG)\cong H_{n-i}(\{1\};D\otimes_k L^*)$, it follows that $0\to D\otimes_k L'\to D\otimes_k L$ is exact.

DEFINITION 4. Let P be a finitely generated projective kG-module. Then the *Hattori-Stallings rank* γ_P of P over k is defined and has a finite expression ([2, pp. 231–241])

$$\gamma_P = \sum_{\tau \in \mathcal{C}} \gamma_P(\tau) \cdot [\tau],$$

where \mathcal{C} is a set of representatives for the conjugacy classes in G and $[\tau]$ denotes the conjugacy class of τ . Thus γ_P can be viewed as a function $\gamma_P: \mathcal{C} \to k$ which is constant on each of conjugacy class and is zero for almost all conjugacy classes. If $P \cong kG^{(n)}$, then $\gamma_P = \gamma_P(1) \cdot [1] = n \cdot [1]$.

Suppose G is of type FP over k. Let $0 \to P_n \to \cdots \to P_0 \to k \to 0$ be a finite projective resolution of k over kG. Then the homological Euler characteristic $\tilde{\chi}(G)$ of G over k is defined to be

$$\tilde{\chi}(G) = \sum_{i=0}^{n} (-1)^{i} \sum_{\tau \in \mathcal{C}} \gamma_{P_{i}}(\tau) \in k.$$

By H. Bass [1], if k is a field then $\tilde{\chi}(G) = \sum_{i=0}^{n} (-1)^{i} \beta_{i}(G)$ where $\beta_{i}(G) = \dim_{k} H_{i}(G, k)$. See [1] for more details.

DEFINITION 5. A group G is called residually finite if for all $g \neq 1$ in G, there is a normal subgroup K of G with $g \notin K$ such that G/K is finite. A group G is called Hopfian if $G \cong G/N$ implies N = 1.

It is known that the free groups are residually finite, and finitely generated residually finite groups are Hopfian. Also, fundamental groups of 2-manifolds are residually finite (see [3] for a simple proof). Clearly virtually residually finite groups are themselves residually finite. Hence Fuchsian groups are residually finite. From this, it follows that certain 3-manifolds (e.g., bundles and Seifert fibered spaces) have residually finite fundamental groups.

THEOREM 6. Let G be an orientable Poincaré duality group of dimension 2 over k, where k is a field of characteristic 0. Then:

- (i) If G is of type FL over k, then $\beta_1(G) \neq 0$.
- (ii) If G is torsion-free or residually finite, then G is of type FL over k with $\beta_1(G) \neq 0$.

Proof. Since G is of type FP with $cd_kG=2$, we can take a finite free resolution of the form

$$(*) 0 \longrightarrow P \stackrel{\gamma}{\longrightarrow} kG^{(n)} \stackrel{\alpha}{\longrightarrow} kG \longrightarrow k \longrightarrow 0.$$

Since $H^i(G; kG) = k$ or 0 according as i = 2 or $i \neq 2$ and since $H^2(G; kG) = k$ with trivial G-action, by taking $Hom_G(-, kG)$ to the

resolution (*), we obtain a resolution of k over kG:

$$0 \longrightarrow kG \xrightarrow{\alpha^*} kG^{(n)} \xrightarrow{\gamma^*} P^* =: \operatorname{Hom}_G(P, kG) \longrightarrow k \longrightarrow 0.$$

The homological Euler characteristic $\tilde{\chi}(G) = 1 - n + \sum_{\tau \in \mathcal{C}} \gamma_P(\tau) = 1 - n + \sum_{\tau \in \mathcal{C}} r_{P^*}(\tau) = 2 - \beta_1(G)$. Hence we have $\sum_{\tau \in \mathcal{C}} \gamma_P(\tau) = \sum_{\tau \in \mathcal{C}} r_{P^*}(\tau) = (1+n) - \beta_1(G)$.

Suppose G is of type FL over k. We can take $P = kG^{(m)}$ for some m in the resolution (*). Hence $\beta_1(G) = (1+n) - m$, which can not be 0 by Lemma 2.

If G is residually finite, then $\sum_{\tau \in \mathcal{C}} r_{P^*}(\tau) = r_{P^*}(1)$ by Corollary 6.10 of [1]. Now suppose G is torsion-free. If $s \neq 1$ in G and $r_{P^*}(s) \neq 0$, then there is an additive subgroup H of G with $s \in H$ such that H is neither a Poincaré duality group nor free by Theorem 8.1.(e) of [1]. If (G:H) is finite, then H is also an orientable Poincaré duality group of dimension 2. If (G:H) is infinite, then by Strebel ([7]) $\operatorname{cd}_k H$ is at most 1 and so H must be free. Therefore both cases can not happen. Hence $r_{P^*}(s) = 0$ for all $s \neq 1$ and $\sum_{\tau \in \mathcal{C}} r_{P^*}(\tau) = r_{P^*}(1)$.

Thus if G is torsion-free or residually finite, then $r_{P^*}(1) = (1+n) - \beta_1(G)$ is a non-negative integer. By a theorem of Kaplansky (cf. [4, 5]), $P^* \cong kG^{r_{P^*}(1)}$. By Lemma 2, $\beta_1(G) \neq 0$. \square

EXAMPLE 7. Let G denote a Fuchsian triangle group $\Delta(p,q,r) = \langle x,y \mid x^p = y^q = (xy)^r = 1 \rangle$. Then G is residually finite and hence Hopfian. Since $H_1(G,\mathbb{Z}) = G/[G,G] = \langle x,y \mid px = qy = rx + ry = 0 \rangle$ is a finite group and so $\beta_1(G) = 0$, by Theorem 6, G is not of type FL over \mathbb{Q} .

REMARK 8. Let G be a non-orientable Poincaré duality group of dimension n over k. Then $H^n(G; kG)$ is a nontrivial G-module k^* , which induces the action homomorphism $G \to \operatorname{Aut}(k^*)$. Let G' be the kernel of the homomorphism. Suppose G' has finite index in G. For instance, if $k^* = \mathbb{Z}$ then $\operatorname{Aut}(k^*) \cong \mathbb{Z}_2$ and G' is an index 2 subgroup of G. Now

$$H^*(G'; kG') \cong H^*(G; \operatorname{Hom}_{kG'}(kG, kG'))$$
 ([2, Proposition III.6.2])
 $\cong H^*(G, kG \otimes_{kG'} kG')$ ([2, Proposition III.5.9])
 $\cong H^*(G; kG).$

and G' acts trivially on $H^n(G'; kG') = H^n(G; kG) = k$. Hence G' is an orientable Poincaré duality group of dimension n over k.

THEOREM 9. Let G be a non-orientable Poincaré duality group of dimension 2 over k with a finite image under the nontrivial action homomorphism $G \to \operatorname{Aut}(H^2(G;kG))$. If G is of type FL over k, then $\beta_1(G) \neq 0$.

Proof. As in the proof of Theorem 6, we take a resolution (*). Let k^* be the nontrivial G-module $H^2(G;kG)$. Then $H_2(G,k) \cong H^0(G,k^*) \cong k^{*G} = \{0\}$, so $\beta_2(G) = 0$. Let G' be the kernel of the action homomorphism $G \to \operatorname{Aut}(k^*)$; then the index (G:G') is finite, say ℓ , and by Remark 8, G' is an orientable Poincaré duality group of dimension 2 over k. Since kG is a free kG'-module of rank ℓ , G' is also of type FL so that $\beta_1(G') \neq 0$ by Theorem 6, and the resolution (*) for G is also a resolution of k over kG'. Hence $\chi(G) = 1 - \beta_1(G) = m - n + 1$ and $\chi(G') = 1 - \beta_1(G') + 1 = \ell(m - n + 1)$. It follows that $\beta_1(G) \neq 0$. \square

Theorem 6 together with the next two propositions, which are well-known (cf. [2]), yields Example 12.

PROPOSITION 10. Let $1 \to G' \to G \to Q \to 1$ be an exact sequence of groups, where G has no k-torsion (i.e., for every finite subgroup N of G, the order of N is a unit in k) and Q is finite. Then G is of type FP over k if and only if G' is of type FP over k.

Proof. Any finitely generated projective kG-module can also be regarded as a projective kG'-module, and as such it is still finitely generated since $(G:G') = |Q| < \infty$. This proves the "only if" part.

Conversely, suppose that G' is of type FP with $\operatorname{cd}_k G' = n$. Consider a resolution of k over kG

$$(1) 0 \longrightarrow K \longrightarrow P_{n-1} \longrightarrow \cdots \longrightarrow P_0 \longrightarrow k \longrightarrow 0.$$

Since G' is of type FP with $\operatorname{cd}_k G' = n$, there is a finite projective resolution of k over kG'

$$(2) 0 \longrightarrow P'_n \longrightarrow \cdots \longrightarrow P'_0 \longrightarrow k \longrightarrow 0.$$

Applying Schanuel's lemma to (1) and (2) yields a kG'-isomorphism

$$P_0 \oplus P_1' \oplus P_2 \oplus P_3' \oplus \cdots \cong P_0' \oplus P_1 \oplus P_2' \oplus P_3 \oplus \cdots$$

Since the P'_j are finitely generated, we may assume that the P_j and K are finitely generated as kG'-modules and hence as kG-modules. Now it suffices to show that K is a projective kG-module. Complete (1) arbitrarily to a projective resolution over kG

$$\cdots \longrightarrow P_{n+1} \xrightarrow{\partial_{n+1}} P_n \longrightarrow P_{n-1} \longrightarrow \cdots \longrightarrow P_0 \longrightarrow k \longrightarrow 0.$$

so that $K = \operatorname{im}\{P_n \to P_{n-1}\}$. Put $L = \ker\{P_n \to P_{n-1}\}$. Since G has no k-torsion, by Swan ([8]), $\operatorname{cd}_k G = \operatorname{cd}_k G' = n$ and hence $H^{n+1}(G;L) = 0$. The (n+1)-cocycle $\partial_{n+1} \in \operatorname{Hom}_{kG}(P_{n+1},L)$ is a coboundary, i.e., there is $\phi: P_n \to L$ such that $\phi \circ \partial_{n+1} = \partial_{n+1}$. This implies that $P_n \cong L \oplus K$ and hence K is projective. \square

PROPOSITION 11. Let $1 \to G' \to G \to Q \to 1$ be an exact sequence of groups, where G has no k-torsion and Q is finite. Then G is a (Poincaré) duality group over k if and only if G' is a (Poincaré) duality group over k.

Proof. By Proposition 10, G is of type FP if and only if G' is of type FP. By Remark 8, $H^*(G;kG) \cong H^*(G';kG')$. Now the proposition follows from cf. [2, Theorem VIII.10.1]. In deed, suppose G' is a duality group over k of dimension n and consider a finite projective resolution for $G: 0 \to P_n \to \cdots \to P_0 \to k \to 0$. Since $H^i(G; kG) =$ $H^{i}(G'; kG') = 0$ if $i \neq n$, taking $Hom_{G}(-, kG)$ yields a resolution $0 \to \bar{P}^0 \to \cdots \to \bar{P}^n \to D \to 0$, where $\bar{P}^i = \operatorname{Hom}_G(P_i, kG)$ is a finitely generated projective kG-module and $D = H^n(G; kG)$. For any G-module M, we have the natural isomorphism $u \otimes m \in \tilde{P}^i \otimes_G M \xrightarrow{\cong}$ $(x \mapsto u(x) \cdot m) \in \operatorname{Hom}_G(P_i, M)$ and thus $H^i(G; M) \cong \operatorname{Tor}_{n-i}^G(D, M)$. On the other hand, since D is a flat k-module, $0 \to P_n \otimes_k D \to$ $\cdots \to P_0 \otimes_k D \to D \to 0$ is a flat resolution of D over kG (cf. [2, Proposition III.2.2]) and thus $\operatorname{Tor}_{n-i}^G(D,M) = H_{n-i}((P_* \otimes_k D) \otimes_G D)$ $M) \cong H_{n-i}(P_* \otimes_G (D \otimes_k M)) = H_{n-i}(G; D \otimes_k M)$. Hence G is a duality group over k of dimension n. Similarly we can show the converse. \square

EXAMPLE 12. Let G denote a Fuchsian group $\langle x_1, \dots, x_q \mid x_i^{n_i} = \prod x_j = 1 \rangle$, where either q > 3 or q = 3 and $\frac{1}{n_1} + \frac{1}{n_2} + \frac{1}{n_3} \leq 1$. Then G contains a surface group as a finite index subgroup that is of type FL over \mathbb{Q} . By Propositions 10 and 11, G is of type FP over \mathbb{Q}

and a Poincaré duality group of dimension 2 over \mathbb{Q} . However, since $\beta_1(G) = 0$ as in Example 7, by Theorem 6, G itself is not of type FL over \mathbb{Q} .

References

- H. Bass, Euler characteristics and characters of discrete groups, Inventiones Math. 35 (1976), 155-196.
- K. S. Brown, Cohomology of groups, Springer-Verlag, Berlin-Heidelberg-New York, 1982.
- J. Hempel, Residual finiteness of surface groups, Proc. Amer. Math. Soc. 32 (1972), 323.
- 4. I. Kaplansky, Fields and rings, Chicago Lectures in Mathematics, The University of Chicago Press, Chicago and London, 1972, p. 122.
- M. S. Montgomery, Left and right inverses in group algebras, Bull. Amer. Math. Soc. 75 (1969), 539-540.
- J.-P. Serre, Cohomologie des groupes discrets, Ann. Math. Studies 70, Princeton Univ. Press, 1971, pp. 77-169.
- 7. R. Strebel, A remark on subgroups of infinite index in Poincaré duality groups, Comment. Math. Helvetici 52 (1977), 317-324.
- 8. R. Swan, Groups of cohomological dimension one, Journal of Algebra 12 (1969), 585-610.

Jong Bum Lee Department of Mathematics Soonchunhyang University Asan 337-745, Korea Current address: Department of Mathematics Sogang University Seoul 121-743, Korea

Chan-Young Park Department of Mathematics Kyungpook National University Taegu 702-701, Korea