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FINITENESS PROPERTIES OF SOME
POINCARE DUALITY GROUPS

JoNGg BuM LEE* AND CHAN-YOUNG PARK**

A space Y is called finitely dominated if there is a finite complex A
such that Y is a retract of K in the homotopy category, i.e., we require
maps 7 : Y — K and r : K — Y with r o ¢ ~ idy. The following
questions are very classical in topology.

QUESTION 1. Does a finitely dominated (G, 1) space have the
homotopy type of a finite complex?

QUESTION 2. Suppose that we have a torsion-free, finite extension
1 - G — G — Q — 1 of groups, and suppose that G' acts freely
and simplicially on a contractible simplicial complex X' with quotient
a finite complex. Can one extend the G'-action on X' to a free and
simplicial G-action on X', or find a contractibl= free G-simplicial com-
plex X so that the quotient X/G has the homotopy type of a finite
complex?

We can change the above topological questions to algebraic ones.
Let k denote a commutative ring with unit 1 % 0. A group G is called
of type FP over k or k is a kG-module of type FP if the trivial G-
module k admits a finite projective resolution over kG, i.e., there is an
exact sequence of &G -modules

00— P, — -+ — P — k—0

with each P, finitely generated projective. A group G is of type FL
over k if k admits a finite free resolution over kG. Clearly the groups
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of type FL are groups of type FP. Some examples of groups of type
FP over Z or FL over Z can be obtained using topology, cf. [2]:
(a) If there exists a {G,1) which is a finite complex, then G is
of type FL over Z.
(b) If there exists a finitely dominated K(G, 1), then G is of type
FPover Z.
(¢) If G is a finitely presented group, then the converses of (a) and
(b} are true.
When we take the algebraic point of view Question 1 is following: There
are no known examples of groups of type FP over Z which are not of
type FL over Z. Algebraically Question 2 means that if G’ is of type
FL over Z it is not known whether G is of type FL over Z.

In this paper we will be concerned with the above algebraic situation,
which is known as Serre’s Conjecture ([6, p.85]), for the groups of type
FP over Q or FL over Q. We will show that the Fuchsian groups
(w1, g | 2t = [la; = 1), where either ¢ > 3 or ¢ = 3 and
;11—1 + t +- ;3—{ < 1, are of type FP over Q, but not of type FL over Q
(see Example 12).

DErINITION 1. The cohomological dimension of (¢ over k, denoted
cdy G, is defined as follows: ¢diG < nif HY(G; M) = O for all i > n and
all kG-module M. Clearly if G is of type FP over k, then cdiG < oc.

LEMMA 2. Let A = kG and A" be the free kG-1nodule of rank n.
Suppose G has a partial free resolution of the form

« 3
Al 2 A D Tk .

Then

0 — A 2 Al D g

is a resolution for G and hence G is of type FL over k with cdy(G) < 1.

Proof. We first assert that there is a A-basis {wg,z1, - ,2,} of
AU gueh that 3(xy) = 1 and Blx;)=0"fori=1,2,---,n. Choose
any A-basis {yo,y1.- - .yn} of AUV Let a; = B8(y;) and let o, 91, - -,
in generate A"TD  Consider 3 @ kT — & defined by 3(y;) =
a; for all ¢ = 0.1.--- .n. Then 3 is surjective. As k is k-free, 3 is
split. Hence there exists a matrix M with entries in k of degree n + 1
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such that Myo, Mgy, -, My, generate knt D) and B(My;) =1or 0
according as ¢ = O or ¢ # 0. Put z;, = My, forall = 0,1,--- ,n.
Then {zg,z1, -+ ,2,} s a A-basis of A "+1) such that F(zg) =1 zmd
Blzi)=0fori= 1,2,~~ ,n.

Thus it follows that AT = AMzo)DA(x1) & - BA(z,). Let I =
ker{f|a(zo) : A(xo) — k}. Then ker(3) = Ig b A(z;) DA(22) & - &
Alz,n) = I P A", Since im(a) = ker(3), the composite roa : A® %
im(a) = ker(8) = I & A™ 5 A where 7 is the projection onto
A s well-defined and surjective. Let N = ker(w o ). Then we have
a split short exact sequence 0 — N — AUY 5 A 5 g a5 A i
free. Hence Al = AUY @) N By a result of Kaplansky (cf. [4. 5]),
N = 0; thus 7o a is an isomorphism and « is an injection. This proves
our lemma. [

DEFINITION 3. A group G of type FP over k is called a duality
group of dimension n over k if H'(G; M) = H,_;(G; D @ M) for all
¢ € Z and kG-module M. Here, D = H"(G; k(7) as an kG-module and
G acts diagonallyon D@ M: ¢ - (d@m) =¢-d&g-m. When D =k,
the group G is called a Poincaré duality group. The Poincaré duality
group G is called orientable if it acts trivially on D = k: otherwise, it
1s called non-orientable.

Suppose G is a duality group over k of dimension n. The duality iso-
morphisins yield that H'(G; kG) = H,_i(G;DawkG) = H,_i({1}; D)
(Shapiro’s lemma, {2, p. 73]) = 0if ¢ # n and ' if ¢ = n and cd; G < n.
In particular, cdyG = n. Moreover D is a flat k-module. For, if
0 - L' - L - L" — 0 is an exact sequence of k-modules then
0— L@ hG — LEp kG — L" 33 kG — 0 is exact and gives the exact
sequence H"YG: L" @ AG) — H"(G; L @ kG) —» H*(G; L & kG).
Since H (G, L* 0 kG) = Hyi(Gy D 2k L* @k kG) = Hy—i({1}; D &g
L"), it follows that 0— Doy L' — D@ L s exact.

DEFINITION 4. Let P be a finitely generated projective kG-module.
Then the Hattori-Stallings rank vp of P over k is defined and has a
finite expression ([2, pp. 231-241])

=) p(7)

Tel
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where C is a set of representatives for the conjugacy classes in G and [7]
denotes the conjugacy class of 7. Thus yp can be viewed as a function
¥p : C — k which is constant on each of conjugacy class and is zero for
almost all conjugacy classes. If P = kG, then vp = vp(1):[1] = n-[1].

Suppose G is of type FPover k. Let 0 > P, — -+« = Py - k — 0
be a finite projective resolution of k over kG. Then the homological
Euler characteristic X(G) of G over k is defined to be

n

UG =D (1) > yp(r) € k.

1=0 rel

By H. Bass [1], if & is a field then V(G) = .1 (-1)'8:i(G) where
B:(G) = dimp H;(G, k). See [1] for more details.

DEFINITION 5. A group G is called residually finite if for all ¢ # 1
in G, there is a normal subgroup K of G with ¢ ¢ I such that G/I¥
is finite. A group G is called Hopfian if G = G/N implies N = 1.

It is known that the free groups are residually finite, and finitely gen-
erated residually finite groups are Hopfian. Also, fundamental groups
of 2-manifolds are residually finite (see [3] for a simple proof). Clearly
virtually residually finite groups are themselves residually finite. Hence
Fuchsian groups are residually finite. From this, it follows that certain
3-manifolds (e.g., bundles and Seifert fibered spacesi have residually
finite fundamental groups.

THEOREM 6. Let G be an orientable Poincaré duality group of di-
mension 2 over k, where k is a field of characteristic 0. Then:
(i) If G is of type FL over k, then 3;(G) # 0.

(i1) If G is torsion-free or residually finite, then G is of type FL
over k with 31(G) # 0.

Proof. Since GG 1s of type FP with cdyG = 2, we can take a finite
free resolution of the form

(%) 0 —s P kG kG — b — 0.

Since HY(G;kG) = k or 0 according as i = 2 or « # 2 and since

H?*(G;kG) = k with trivial G-action. by taking Homg(—, kG) to the
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resolution (*), we obtain a resolution of k over kG:

0 — kG 25 kG 2 pr Homg(P, kG) — k — 0.

The homological Euler characteristic ¥(G) = 1 —n + ZTEC yp(r) =
1 —n+ ZTEC rpe(7) = 2 — 3,(G). Hence we have Zrec yp(r) =
Zrec 7‘[)-«(7’) = (1 + Tl) - ,B](G)

Suppose G is of type FL over k. We can take P = kG'™ for some
m in the resolution (¥). Hence 81(G) = (14 r.) — m, which can not be
0 by Lemma 2.

If G is residually finite, then 3 __.rp+(7) = rp«(1) by Corollary
6.10 of [1}. Now suppose G is torsion-free. If s # 1in G and rp.(s) # 0,
then there is an additive subgroup H of G with s € H such that H is
neither a Poincaré duality group nor free by Theorem 8.1.(e) of [1]. If
(G:H) is finite, then H is also an orientable Poincaré duality group of
dimension 2. If (G:H ) is infinite, then by Strebel ([7]) cdi H is at most
1 and so H must be free. Therefore both cases can not happen. Hence
rp+(s) = 0 for all s # 1 and Yoree TP (1) =1 pe(1).

Thus if G is torsion-free or residually finite, then 7p. (1) = (1+n) —
B1(G) is a non-negative integer. By a theorem of Kaplansky (cf. [4,
5]), P* = kGT7*(V. By Lemma 2. 3(G) #0. O

EXAMPLE 7. Let G denote a Fuchsian triangle group A(p,¢,7) =
(z,y | 2 = y? = (zy)” = 1). Then G is residually finite and hence
Hopfian. Since H1(G,2Z) = G/[G.G] = (z,y | pr = qy = rx + ry = 0)
1s a finite group and so §1(G) = 0. by Theorern 6, G is not of type FL
over Q.

REMARK 8. Let GG be a non-orientable Pcincaré duality group of
dimension n over k. Then H"(G;kG) is a nontrivial G-module k*,
which induces the action homomorphism G — Aut(k*). Let G be the
kernel of the homomorphism. Suppose G' has finite index in G. For
instance. if k* = Z then Aut(h*) = Zs and G' is an index 2 subgroup

of G. Now

H*(G' kG") = H*(G; Homue (kG kG"))  ([2, Proposition 111.6.2])
= HY (G kG Qpeo kG ([2, Proposition 111.5.9])
> H*(G: kG).
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and G’ acts trivially on H"(G'; kG') = H™(G;kG) = k. Hence G' is

an orientable Poincaré duality group of dimension n over k.

THEOREM 9. Let G be a non-orientable Poincaré duality group of

dimension 2 over k with a finite inage under the nontrivial action
homomorphisin G — Aut(H*(G; kG)). If G is of type FL over k, then
Bi(G) # 0.

Proof. Asin the proof of Theorem 6, we take a resolution (*). Let k*
be the nontrivial G-module H*(G; kG). Then H2(G, k) = HY(G, k*)
o= {0}, so 32(G) = 0. Let G’ be the kernel of the action homo-
morphism G — Aut{k*); then the index (G:G') is finite, say £, and by
Remark 8, G' is an orientable Poincaré duality group of dimension 2
over k. Since kG is a free kG'-module of rank ¢, G' is also of type FL
so that 8;(G’) # 0 by Theorem 6, and the resolution (*) for G is also
a resolution of & over kG'. Hence \(G) =1— 5i1(G):=m —n+1 and
VG Y =1=-681(G'Y+ 1 ={{m-n+1). It follows that 31(G) #0. O

Theorem 6 together with the next two propositions, which are well-
known (cf. [2]), yields Example 12.

PROPOSITION 10. Let 1 — G’ — G — (Q — 1 be an exact sequence
of groups, where G has no k-torsion (i.e., for every finite subgroup N
of G, the order of N is a unit in k) and () is finite. Then G 1is of type
FP over k if and only if G' is of type FP over k.

Proof. Any finitely generated projective kG-module can also be re-
garded as a projective kG'-module, and as such it is still finitely gen-
erated since (G:G') = |Q| < oo. This proves the “only if” part.

Conversely, suppose that G’ is of type FP with cdg(¢' = n. Consider
a resolution of k over kG

(1) 0 s N s Py = - = Py — k= 0.

Since G' is of type FP with ¢diG' = n, there is a finite projective
resolution of k over AG'
{(2) 0— P, — - — Py — k—0.

n

Applying Schanuel’s lemma to (1) and (2) yields a k('-isomorphisin

Py Pl Pra P =P P @P,@P. &
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Since the P} are finitely generated, we may assume that the P; and K
are finitely generated as kG'-modules and hence as kG-modules. Now
it suffices to show that K is a projective kG -module. Complete (1)
arbitrarily to a projective resolution over kG

O 1
M n+l“’"’pn‘—"'\Pn—]_)"'**""PO_“)]C—’O-

so that K = im{P, — P,_,}. Put L = ker{P, — P,_{}. Since
G has no k-torsion, by Swan ([8)]), cdiG = c¢diG' = n and hence
H"YG; L) = 0. The (n + 1)-cocycle On41 < Homgg(Pns1,L) is a
coboundary, i.c., there is ¢ : P, — L such that ¢ 0 Ony; = On+1. This

~

implies that P, = L & K and hence K is projective. [

PROPOSITION 11. Let 1 — G' — G — Q — 1 be an exact sequence
of groups, where G has no k-torsion and Q is finite. Then G is a
(Poincaré) duality group over k if and only if G' is a (Poincaré) duality
group over k.

Proof. By Proposition 10, G is of type FP if and only if G’ is of type
FP. By Remark 8, H*(G;kG) = H*(G';kG'). Now the proposition
follows from cf. [2, Theorem VIIL10.1]. In deed, suppose G’ is a
duality group over k of dimension n and consider a finite projective
resolution for G: 0 — P, — -+ -» Py — k — 0. Since HY(G;kG) =
HY(G" kG = 0 if 4 # n, taking Homg(—, #G) yields a resolution
0 - P 5 ... % P" 5 D — 0, where P' = Home(P;, kG) is a
finitely generated projective kG-module and D = H"(G; kG). For any

G-module M, we have the natural isomorphista v @ m € P* @¢ M 5
(z — u(z)-m) € Homg(P;, M) and thus H(G; M) = Tor,(j_i(D, M).
On the other hand, since D is a flat k-module, 0 — P, ®x D —

<= Py & D — D — 0 is a flat resolution of D over kG (cf. ]2,
Proposition I11.2.2]) and thus Tor” (D, M) = H._{((P, ©x D) ©¢
M) = H, (P, ©%¢ (D &r M)) = H,_i(G;D & M). Hence G is
a duality group over k of dimension n. Similarly we can show the
converse. [

EXAMPLE 12. Let G denote a Fuchsian group (@, - @, | a7
[Tz; = 1). where cither ¢ > 3 or ¢ = 3 ard 7—31— + n% + n% <
Then G contains a surface group as a finite index subgroup that is of

type FL over Q. By Propositions 10 and 11, (7 is of type FP over Q

..
=
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and a Poincaré duality group of dimension

(G) = 0 as in Example 7, by Theorem 6, G itself is not of type FL

B
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