• 제목/요약/키워드: homogeneous Riemannian manifold

검색결과 10건 처리시간 0.017초

Curvature homogeneity for four-dimensional manifolds

  • Sekigawa, Kouei;Suga, Hiroshi;Vanhecke, Lieven
    • 대한수학회지
    • /
    • 제32권1호
    • /
    • pp.93-101
    • /
    • 1995
  • Let (M,g) be an n-dimensional, connected Riemannian manifold with Levi Civita connection $\nabla$ and Riemannian curvature tensor R defined by $$ R_XY = [\nabla_X, \nabla_Y] - \nabla_{[X,Y]} $$ for all smooth vector fields X, Y. $\nablaR, \cdots, \nabla^kR, \cdots$ denote the successive covariant derivatives and we assume $\nabla^0R = R$.

  • PDF

CURVATURES ON THE ABBENA-THURSTON MANIFOLD

  • Han, Ju-Wan;Kim, Hyun Woong;Pyo, Yong-Soo
    • 호남수학학술지
    • /
    • 제38권2호
    • /
    • pp.359-366
    • /
    • 2016
  • Let H be the 3-dimensional Heisenberg group, ($G=H{\times}S^1$, g) a product Riemannian manifold of Riemannian manifolds H and S with arbitrarily given left invariant Riemannian metrics respectively, and ${\Gamma}$ the discrete subgroup of G with integer entries. Then, on the Riemannian manifold ($M:=G/{\Gamma}$, ${\Pi}^*g=\bar{g}$), ${\Pi}:G{\rightarrow}G/{\Gamma}$, we evaluate the scalar curvature and the Ricci curvature.

THE EXPANSION OF MEAN DISTANCE OF BROWNIAN MOTION ON RIEMANNIAN MANIFOLD

  • Kim, Yoon-Tae;Park, Hyun-Suk;Jeon, Jong-Woo
    • 한국통계학회:학술대회논문집
    • /
    • 한국통계학회 2003년도 춘계 학술발표회 논문집
    • /
    • pp.37-42
    • /
    • 2003
  • We study the asymptotic expansion in small time of the mean distance of Brownian motion on Riemannian manifolds. We compute the first four terms of the asymptotic expansion of the mean distance by using the decomposition of Laplacian into homogeneous components. This expansion can he expressed in terms of the scalar valued curvature invariants of order 2, 4, 6.

  • PDF

DISK-HOMOGENEOUS RIEMANNIAN MANIFOLDS

  • Lee, Sung-Yun
    • 대한수학회보
    • /
    • 제36권2호
    • /
    • pp.395-402
    • /
    • 1999
  • We introduce the notion of strongly k-disk homogeneous apace and establish a characterization theorem. More specifically, we prove that any analytic Riemannian manifold (M,g) of dimension n which is strongly k-disk homogeneous with 2$\leq$k$\leq$n-1 is a space of constant curvature. Its K hler analog is obtained. The total mean curvature homogeneity of geodesic sphere in k-disk is also considered.

  • PDF

AFFINE YANG-MILLS CONNECTIONS ON NORMAL HOMOGENEOUS SPACES

  • Park, Joon-Sik
    • 호남수학학술지
    • /
    • 제33권4호
    • /
    • pp.557-573
    • /
    • 2011
  • Let G be a compact and connected semisimple Lie group, H a closed subgroup, g (resp. h) the Lie algebra of G (resp. H), B the Killing form of g, g the normal metric on the homogeneous space G/H which is induced by -B. Let D be an invarint connection with Weyl structure (D, g, ${\omega}$) in the tangent bundle over the normal homogeneous Riemannian manifold (G/H, g) which is projectively flat. Then, the affine connection D on (G/H, g) is a Yang-Mills connection if and only if D is the Levi-Civita connection on (G/H, g).

R-CRITICAL WEYL STRUCTURES

  • Kim, Jong-Su
    • 대한수학회지
    • /
    • 제39권2호
    • /
    • pp.193-203
    • /
    • 2002
  • Weyl structure can be viewed as generalizations of Riemannian metrics. We study Weyl structures which are critical points of the squared L$^2$ norm functional of the full curvature tensor, defined on the space of Weyl structures on a compact 4-manifold. We find some relationship between these critical Weyl structures and the critical Riemannian metrics. Then in a search for homogeneous critical structures we study left-invariant metrics on some solv-manifolds and prove that they are not critical.

THE SCHWARZIAN DERIVATIVE AND CONFORMAL TRANSFORMATION ON FINSLER MANIFOLDS

  • Bidabad, Behroz;Sedighi, Faranak
    • 대한수학회지
    • /
    • 제57권4호
    • /
    • pp.873-892
    • /
    • 2020
  • Thurston, in 1986, discovered that the Schwarzian derivative has mysterious properties similar to the curvature on a manifold. After his work, there are several approaches to develop this notion on Riemannian manifolds. Here, a tensor field is identified in the study of global conformal diffeomorphisms on Finsler manifolds as a natural generalization of the Schwarzian derivative. Then, a natural definition of a Mobius mapping on Finsler manifolds is given and its properties are studied. In particular, it is shown that Mobius mappings are mappings that preserve circles and vice versa. Therefore, if a forward geodesically complete Finsler manifold admits a Mobius mapping, then the indicatrix is conformally diffeomorphic to the Euclidean sphere Sn-1 in ℝn. In addition, if a forward geodesically complete absolutely homogeneous Finsler manifold of scalar flag curvature admits a non-trivial change of Mobius mapping, then it is a Riemannian manifold of constant sectional curvature.

COHOMOGENEITY ONE RIEMANNIAN MANIFOLDS OF CONSTANT POSITIVE CURVATURE

  • Abedi, Hosein;Kashani, Seyed Mohammad Bagher
    • 대한수학회지
    • /
    • 제44권4호
    • /
    • pp.799-807
    • /
    • 2007
  • In this paper we study non-simply connected Riemannian manifolds of constant positive curvature which have an orbit of codimension one under the action of a connected closed Lie subgroup of isometries. When the action is reducible we characterize the orbits explicitly. We also prove that in some cases the manifold is homogeneous.