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COHOMOGENEITY ONE RIEMANNIAN MANIFOLDS OF
CONSTANT POSITIVE CURVATURE

HOSEIN ABEDI AND SEYED MOHAMMAD BAGHER KASHANI

ABSTRACT. In this paper we study non-simply connected Riemannian
manifolds of constant positive curvature which have an orbit of codimen-
sion one under the action of a connected closed Lie subgroup of isometries.
When the action is reducible we characterize the orbits explicitly. We also
prove that in some cases the manifold is homogeneous.

Introduction

Two isometric actions of two Lie groups G and G’ on a Riemannian mani-
fold M are called orbit equivalent if there exists an isometry of M which maps
G-orbits onto G’-orbits. An isometric action of a connected Lie group G on a
Riemannian manifold M is called polar if there exists a closed embedded smooth
submanifold of M which intersects all orbits orthogonally. Such a submanifold
is called a section of the group action. A polar action is called hyperpolar if the
sections are flat in the induced metric. A classification of polar representations
G — SO(n) was given by Dadok [4]. He showed that every polar representa-
tion is orbit equivalent to an s-representation , i.e., isotropy representation of a
Riemannian symmetric space. An important special case of hyperpolar actions
are cochomogeneity one actions (actions whose principal orbits have codimension
one) with closed normal geodesics. Cohomogeneity one Riemannian manifolds
have been investigated by several authors(see [1], [2] for example). C. Searle
[7] provided a complete classification, up to diffeomorphism, of such manifolds
when they are compact, of positive curvature and of dimension less than seven
and the seven dimensional case has been studied by F. Podesta and L. Verdiani
in [6]. A. Kollross obtained a classification of hyperpolar and cohomogeneity
one actions on the irreducible Riemannian symmetric spaces of compact type
(cf. [5]). The classification of the general case in positive curvature is still
open. In this paper we study cohomogeneity one actions on non-simply con-
nected Riemannian manifolds of constant positive curvature, i.e., without loss
of generality we may assume that M = S™/T', where I' = m1(M). The main
result of the paper are Theorem 2.5, Propositions 2.2 and 2.4.
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1. Preliminaries

A cohomogeneity one action on sphere, which is a cohomogeneity two action
on the corresponding Euclidean space, is orbit equivalent to isotropy representa-
tion of a Riemannian symmetric space of rank two (note that the cohomogeneity
of an s-representation is the rank of the corresponding symmetric space). Since
a totally geodesic submanifold of R™ is flat, the polar actions on R™ are auto-
matically hyperpolar. We recall the following two theorems of Dadok [4]. The
first theorem classifies hyperpolar representations H — SO(n) on R™ and the
second one describes the reducible polar actions on R™.

Theorem 1.1 ([4]). Suppose H is a compact, connected Lie group and p :
H — S0(n) is a representation such that the action of H on R™ is hyperpolar.
Then there exists a symmetric space G/K and a linear isometry A: R — p
such that A maps H-orbits isometrically onto K -orbits of the s-representation
onp (g =~Etdp is the cartan decomposition).

Theorem 1.2 ([4]). Suppose H is a compact, connected Lie group and p :
H — SO(V) is a polar representation and V. = Vi @ Va is a direct sum
decomposition of V into H-invariant subspaces. Let ¥ be a section for V,
5, =XNnYV; and let Hy = Z,(Z3, H) and Hy = Z,(%1, H) denote the identity
component of the centralizers in H of ¥ and X1 respectively. Then

(a) Z=%1 8%y,

(b) the H;-action on V; is polar with ¥; as section,

(C) ifS:51+82€21®22 then H-s= Hy -8 X Ha - s9.

Note that H and H; x H; are not equal in general. For example consider
the action of H = SU(4) = Spin(6) on R = R® ® R® by p4 + pe ( pn and py
are the standard representations of the groups SU(n) and SO(n) respectively).
Then H; = Spin(5) = Sp(2), Hy = SU(3) and the action of SU(4) on R is
orbit equivalent to the action of Sp(2) x SU(3) on R® & RE.

Suppose that the Lie group G acts isometrically on S™. We say that the
action of G on S™ is reducible (resp, irreducible) if the corresponding action
of G on R™! is reducible (resp, irreducible). Recall that cohomogeneity one
actions on the sphere S™ C R™*! are hyperpolar (they are hyperpolar on R™+1
as well). Also recall that if a connected Lie group G acts by cohomogeneity
one on a connected, compact Riemannian manifold M of positive sectional
curvature, then the orbit space is homeomorphic to [0,1], therefore M has
exactly two singular orbits.

It is known that irreducible cohomogeneity one actions on spheres are s-
representations of irreducible Riemannian symmetric spaces of rank two (see
(8])-

In main result we need the following theorem (see [9] pages 88,89) which
gives all homogeneous manifolds of constant positive curvature. For definition
of groups D}, T*, O* and I* see chapter 2 of [9].
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Theorem 1.3 ([9]). Let M™ be a connected homogeneous Riemannian manifold
of dimension n and constant curvature K > 0.
(a) M™ is isometric to the manifold S™/T', where (i) F is a field R, C,
Q (quaternions), (i) S™ is the sphere x| = K~'/2 in a left hermitian
vector space V over F, where V has real dimension n+ 1, (iii) T is
a finite multiplicative group of elements of norm 1 in F which is not
contained in a proper subfield Fi, R C F; CF, and (iv) ' acts on S™
by F-scalar multiplication of vectors.
Conversely, all the manifolds listed are n-dimensional Riemannian
homogeneous manifolds of constant curvature K > 0.
(b} M™ is determined up to isometry by the fundamental group m (M™).
The only cases are (i) M™ = S™; (ii) M™ = RP™ = §"/{£I}; (iii) n+
1 =0(mod 2) while M™ = 8"/ Z., with m > 2; (iv) n+ 1 = 0(mod 4)
while M™ = S"™/D}, with m > 2 or M™ = §™/T* or M™ = §™/O* or
M" =8"/I*.

2. Main results

Assume that G acts by cohomogeneity one on S™ and the action is reducible,
by Theorem 1.2 there is a G-invariant decomposition of R**! as = V4 @ V5.
If G has a fixed point g € S™, then one of the V}’s, say Vi, has dimension
one and G fixes the line V; point-wise. So there exist two singular orbits {o},
{~zo} and the principal orbits are spheres. If G does not have any fixed
point, i.e., dimV; — 1 = m; > 0, i = 1,2 then the two singular orbits are
S; = 8™ CV;, i=1,2. Since S™(c1) x S™2(cp), ¢? + ¢3 = 1, is invariant
under G, the principal orbits are isometric to S™(c1) x S™2(c2), ¢? + 3 = 1.
So we get the following proposition.

Proposition 2.1. Let G be a connected closed Lie subgroup of isometries of
S™ which acts by cohomogeneity one on S™ and its action is reducible, then
one of the following cases can happen.

(a) There are two zero dimensional singular orbits {zo} and {—zo}. Each
principal orbit is isometric to S"1(c), where 0 < ¢ < 1 varies with
orbits and c is equal to 1 for only one orbit. If 0 < ¢ < 1, there are two
principal orbits isometric to S"71(c).

(b) There are two singular orbits Dy, Dy isometric to S™ and S™?2, where
mi1+mg =n—1, my,me > 0 and each principal orbit is isometric to
S§™1(c1) x S™2(cy), where 2 + ¢ = 1. ¢1, ¢z depend on orbits and for
each c1,co > 0 satisfying the relation c3 + c5 = 1, there is exactly one
principal orbit isometric to S™ (¢1) X S™2(c2).

From now on we assume that M is a complete, connected, non-simply con-
nected and n-dimensional Riemannian manifold of constant curvature 1, so its
universal covering is S™ hence M = S™ /T, where I' (= 71 (M)) is the group of
deck transformations of S™ — M. We identify 7 (M) with T' which acts freely
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on S™. Recall that if a connected Lie group G acts on M then there exists a
covering group G’ of G which acts on S™ and ker(G' — G) is a subgroup of
I'. As a consequence G’ commutes with I'. First we study reducible actions.
By using Proposition 2.1 we get

Proposition 2.2. Let M be a complete non-simply connected Riemannian
manifold whose universal covering is S™ and is of cohomogeneity one under
the action of a connected closed Lie subgroup G C Iso(M). If the action of G’
on 8™ is reducible then one of the following cases occurs:

(a) M = RP™ and there are two singular orbits, one is zero dimensional
and the other one is isometric to RP™~'. Each principal orbit is iso-
metric to S""1(c), where 0 < ¢ < 1 varies with orbits.

(b) There are two singular orbits isometric to ﬂrni and 5#, where m; and
mga are positive integers with my +me = n— 1. Each principal orbit is
isometric to w, 2+ cZ =1 (cy,co varies with orbits).

Proof. Let T" be the deck transformations of S — M. By Proposition 2.1 we
have the following two cases.

(a) Case (a) of Proposition 2.1 happens for the action of G’ on S™. In this
case for f € T either f(zg) = z¢ or f(xg) = —x¢, hence I' = {£I}, therefore
M = S"/{+I} = RP",

(b) Case (b) of Proposition 2.1 happens for the action of G’ on S™. Since
fi O
0 fo

each f € I decomposes as (
covering map S™ — M maps each orbit to its quotient by T O

), I" sends each orbit to itself hence the

A variant of Propositions 2.1 and 2.2 has appeared in a preprint of R. Mirzaie
and S. M. B. Kashani, which we benefited from. We observed in Proposition 2.2
that if M™ is a cohomogeneity one Riemannian manifold of constant curvature
1 then there are orbits in M isometric to %n‘—i, i=1,2, 0 = m(M). Using
Theorem 1.3 we get the following corollary.

Corollary 2.3. Let M™ be a cohomogeneity one Riemannian G-manifold of
constant curvature one. Assume that the action of G’ on M = S™ is reducible.
Then m (M) is one of the groups Z,,, D}, T*, O*, I*.

Via the group I' we study (the actions of) G and ' in more detail. Let
¥ = 11 © Yo be the reducible action of G’ on R**t! = V; & V,. We assume
that dimV; — 1 = m; > 0, i.e., G has no fixed point in S™. Recall that G’ is a
subgroup of the centralizer of I in O(n + 1) and G = %

We need the list of compact connected Lie groups which act effectively and
transitively on sphere. A. Borel have classified them (cf. [3]) and obtained the

following list which we call it the Borel list.
S0(n), SU(n), U(n), Sp(n), T* - Sp(n), Sp(1) - Sp(n), Spin(7), Spin(9), Gz.

Proposition 2.4. With assumptions as in Proposition 2.2, one of the following
holds
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(i) If T =Zy then v;(G"), i = 1,2 can be any group of the Borel list.
() If T' = Zm, m > 2 then ¢4(G’), i = 1,2 can be one of the following
groups:

SU(K), Sp(k), U(k), T"- Sp(k), Sp(1) - Sp(k)
(iii) If T =Dy, m>2 or T* or O* or I* then v¥;(G’) can be Sp(k).

Proof. Case (i) is obvious. In case (ii), by Theorem 1.3, n + 1 is even, since
the action of I' on S™ is fixed point free, m; + 1 and mso + 1 are even too and
I' acts on V; by C-scalar multiplication of vectors. G’ commutes with T' and
among the groups of the Borel list only groups indicated in (ii) of proposition
(whose actions are complex) commute with T, so (ii) is obtained. In case (iii)
n+1,m +1,me+1=0(mod 4) and T acts on V; by H-scalar multiplication
of vectors. The groups SO(k), SU(k), U(k), Spin(7), Spin(9), G2 do not
commute with T, also the action of the group Sp(1) - Sp(k) does not commute
with multiplication by quaternions. Hence 1;(G’) can be only Sp(k). O

Remark. In case (i) I' = {£I} and M = RP™. If -] € G’ then G = G'/T, if
—I ¢ G’ then G’ = G. Note that if n + 1 is odd, only the case (i) can happen
and if n + 1 = 2(mod 4) the cases (i) and (ii) can happen.

According to the above Proposition it may happen that the actions of two
Lie groups G; and G2 on S™ are orbit equivalent but the quotient manifolds
M = S"/T" are different as %‘_ manifold, ¢ = 1,2 since I" depends on G,
and G5. For example the actions of the groups G; = Sp(2) x Sp(3), Gy =
SU(4) x U(6) and Gz = SO(8) x SO(12) on S*° are orbit equivalent but for
G3 the group I' can be Zg, for G5 the group I can be Z,, and for G; the group
I’ can be Z, or D;,p> 2 or T* or O* or I*.

The following example shows that in Corollary 2.3 the manifold M is not
necessarily homogeneous.

Example (1). Let M be the Lens space S®/T, where I is generated by
R(1/n) 0
0 R(k/n) )’

cos2nf  sin 2wl
where R(f) = —sin278 cos2wl
1 < k < n, I" does not act by scalar multiplication of vectors hence by The-
orem 1.3 the manifold M is not homogeneous (one can easily see that the
dimension of the centralizer of I' in O(4) is two). The group SO(2) x SO(2) =

{( 61 g ) :A,Be¢ SO(2)} C O(4) acts by cohomogeneity one on S3 and

I' is an abelian normal subgroup of this group, so we have the action of the
group G = %);SO@ on M = $3/T" which is of cohomogeneity one.

) and (n,k) =1, n > k > 1. Since

Now we assume that the action of G' on R™**! is irreducible. Consider the
simple case I' = Zy = {£I}, i.e., M = RP", Let P, = G'z; be a singular
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orbit in §™. If —x; ¢ P; then P, = G'(—x) is the other singular orbit and
I maps these two orbits to each other, so 7(P;) = 7(P2) is a singular orbit in
M and the other singular orbit is exceptional. If —z; € P, then for the second
singular orbit Py = G'x3, —z, € P as well, therefore Q; = n(P;), i = 1,2 are
singular orbits of M. Note that for the reducible action of G’ we got only the
latter case.

Theorems 6.1.11 and 6.3.1 of [9] give all finite groups I which act on sphere
without fixed point. Let I" be of type I introduced in Theorem 6.1.11. It has
two generators A and B with relations A™ = B? =1, BAB™'=A", (q(r —
1),m) = 1 and if d is the order of r in the group U, = {a € N: (a,m) =1, a <
m} then d | ¢ and ¢/d is divisible by every prime divisor of d. Note that if
n+1=2(mod 4) I is just of type I. We assume that || > 2 then n+ 1 = 2p.
The group I' has 2d-dimensional representation 7y ;, where (k,m) = 1 = (I, n)
as follows:

R(%)
R(kr
T a(A) = ) . :
R(kr:l_l)
0 I
Tga(B) = (:) - Ll
R(/¢) 0 --- 0

cos2mf  sin2w6
—sin278 cos2wf
point free representation of I' on R"**! is

(2.1) = Thy,1, @+ B T, 1,

(see chapters 5-7 of [9]). If two representations 1 and @y of I' are equivalent
then the manifolds M; and M, are isometric, in fact they are conjugate. So
we identify equivalent representations, in particular since #,;, and ﬁ,;fli are
equivalent, we assume that 7y, ;, # 7‘rk_j 1’lj for i # 5. When T’ is of type I we get
the following theorem.

Theorem 2.5. Let M = S™/T, where T is of type I introduced above. If M

is a cohomogeneity one G-manifold and the action of G' on S™ is irreducible
then M is a homogeneous manifold.

where R(6) = ( ) and ¢ = ¢d. If p = sd then a fixed

Proof. The covering group G’ of G, which acts by cohomogeneity one on S™,
is a subgroup of C°(T') := ®(n+1)(#(I)) = the identity component of the
centralizer of (') in O(n +1). By calculating the group C(I') we obtain some
restrictions on G’. If [I| = 2 then M = RP™, so we assume that |I'| > 2. If
d=1thenr=m=1andI' = (B) 2 Z, has two dimensional representation
¢k = R(k/q) and by (2.1) a 2p-dimensional representation of T is of the form
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Y= g, & - ®pk, whose matrix is diag(R(k1/q),. .., R(kp/q)). Note that ¢y,
and 4,0,;1 are equivalent, so in the decomposition of ¢ we assume that oy, # @,;1
for i # j. By Theorem 1.3 M = S™ /T’ is homogeneous if and only if all ¢, ’s are
equal and in this case C?(T") = U(n). If ¢k, ’s are not equal and we assume that
By = "= Phyy Pl = 0= Py Phyg # pr, then C°(T) = U(l) xUp—1),
hence the action of G’ is reducible on R**!. For other cases of ¢, ’s, in addition
to the reducibility of the action of G’ on R™**!, the cohomogeneity of the action
is greater than one. So the only possible case is that all pg,’s are equal, hence
M is homogeneous. If d > 1 and p = sd then p = 7y, 1, - - D Fp, . Us=1
then C°(T') 2 T = U(1) so G’ can not act by cohomogeneity one on S™ unless
n = 2 which implies |I'| = 2 and M = RP?. If s > 1 and all #, , are equal
then C(I') is isomorphic to a group of matrices of the form diag(D, ..., D),
where D is a 25 X 2s-matrix of the form

A Ay Ay - Asq

B A A o A

B, B A . As,_3 |, where A, A; and B; have the form
B;, 1 Bs o - A

a b

-b a )7

Since this group is a subgroup of O(n + 1), its dimension is at most 2s,
therefore n — dimG’ > n — 2s = 2s(d — 1) — 1 > 3. If some f, ;8 are not

equal (again we assumed g, ), # frk_jllj) then C(T") becomes smaller, so the
cohomogeneity of the action of G’ on S™ is greater than one. a

It is not easy to describe the structure of orbits of an irreducible action of
cohomogeneity one on S™ and M = S™/I'. For principal orbits of irreducible
actions of cohomogeneity one on S™ we refer the reader to table II of [8], where
the isotropy subgroup of a principal point has been given.

The result of Theorem 2.5 is that if M = S™/T', T is of type I, is not
homogeneous then it is not of cohomogeneity one under the action of G. Our
conjecture is that for other types of the group I" (introduced in Theorems 6.1.11
and 6.3.1 of [9]) the theorem is valid as well, i.e.,

Conjecture. Let M = S™/T' (T' of types other than I) be a Riemannian
manifold of constant curvature 1 and G a closed connected subgroup of Iso(M)
such that the action of the covering group G’ on S™ s irreducible. If M is not
homogeneous then it is not of cohomogeneity one under the action of G.

In the following examples we have used the fact that if we identify R™™ =
R™ @ R™ with Mat(n x m,R), the n x m real matrices, then the standard
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metric of R™ is (X, X) = Tr(XX"), X € Mat(n x m,R) and we have
(AXB', AXB?') = (X, X) for (A, B) € SO(n) x SO(m).

The following example is the only one in which a Lie group acts irreducibly
and by cohomogeneity one on an even dimensional sphere (see table II of [8]).

Example (2). The action of G = SO(3) on R® ~ S2(R?) given by p(4)X =
AXAY, A€ SO(3), X € S2(R?) is irreducible and of cohomogeneity one on
S§% C R®. One can see, with an easy calculation, that the stabilizer of the
point X = diag(a, —a,0) is isomorphic to Zq & Z> and the stabilizer subgroup
of the point Y = diag(b, b, —2b) is isomorphic to SO(2) - (Za & Z2) ~ SO(2) x
Zs. On the other hand the two points Y and —Y are not in the same orbit,
so we have two isometric singular orbits G(Y') and G(-Y) and all regular
points have stabilizer subgroups isomorphic to Zo ® Z,. Since —I5 € O{(5)
commutes with the group G = SO(3) — SO(5) (we identify the group G with
its image under p), and is not in G we get the action of G on the manifold
S4/{+Is} = RP* which is of cohomogeneity one. The two singular orbits
G(1Y) are identified in RP* and there is an exceptional orbit correspond to
01 0
the point X = 1 0 0 | whose stabilizer subgroup is isomorphic to the
0 00
dihedral group Djy.
The following is a simple example illustrates Theorem 2.5.

Example (3). Consider the action of the group G = SO(3) ® SO(2) C SO(6)
on R3 ® R? = RS given by (4,B) - X = AXB!, X € Matsy2(R). The action

is irreducible and of cohomogeneity one on $5. Since (I3, —I3) - X = —X, in
contrast to the previous example, X and —X are in the same orbit. The two
10
singular orbits are G(X1) and G(X3), where X; = [ 0 0 | whose stabilizer
00
1 1
subgroup is isomorphic to SO(2) X Zy and Xo = | 1 -1 | whose stabilizer
0 0

subgroup is isomorphic to SO(2). Regular points have stabilizer subgroups
isomorphic to Zz. The group I' & Z,, as a subgroup of {(I3, B) : B € SO(2)} C
Z(G) commutes with G and we get the action of the group G/T on S%/T'
which is of cohomogeneity one. Note that M = $5/I" is homogeneous. (In fact
G = S0(3) x S0(2) = SO(3) x U(1) is a subgroup of U(3) and we can identify
R® with C3).
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