DOI QR코드

DOI QR Code

THE SCHWARZIAN DERIVATIVE AND CONFORMAL TRANSFORMATION ON FINSLER MANIFOLDS

  • Bidabad, Behroz (Faculty of Mathematics and Computer Science Amirkabir University of Technology) ;
  • Sedighi, Faranak (Faculty of Mathematics Payame Noor University of Tehran)
  • Received : 2019.06.25
  • Accepted : 2020.01.02
  • Published : 2020.07.01

Abstract

Thurston, in 1986, discovered that the Schwarzian derivative has mysterious properties similar to the curvature on a manifold. After his work, there are several approaches to develop this notion on Riemannian manifolds. Here, a tensor field is identified in the study of global conformal diffeomorphisms on Finsler manifolds as a natural generalization of the Schwarzian derivative. Then, a natural definition of a Mobius mapping on Finsler manifolds is given and its properties are studied. In particular, it is shown that Mobius mappings are mappings that preserve circles and vice versa. Therefore, if a forward geodesically complete Finsler manifold admits a Mobius mapping, then the indicatrix is conformally diffeomorphic to the Euclidean sphere Sn-1 in ℝn. In addition, if a forward geodesically complete absolutely homogeneous Finsler manifold of scalar flag curvature admits a non-trivial change of Mobius mapping, then it is a Riemannian manifold of constant sectional curvature.

Keywords

Acknowledgement

The first author would like to thank the Institut de Mathématiques de Toulouse (IMT) in which this article is partially written.

References

  1. H. Akbar-Zadeh, Sur les espaces de Finsler a courbures sectionnelles constantes, Acad. Roy. Belg. Bull. Cl. Sci. (5) 74 (1988), no. 10, 281-322.
  2. H. Akbar-Zadeh, Generalized Einstein manifolds, J. Geom. Phys. 17 (1995), no. 4, 342-380. https://doi.org/10.1016/0393-0440(94)00052-2
  3. D. Bao, S.-S. Chern, and Z. Shen, An Introduction to Riemann-Finsler Geometry, Graduate Texts in Mathematics, 200, Springer-Verlag, New York, 2000. https://doi.org/10.1007/978-1-4612-1268-3
  4. D. Bao and C. Robles, Ricci and flag curvatures in Finsler geometry, in A sampler of Riemann-Finsler geometry, 197-259, Math. Sci. Res. Inst. Publ., 50, Cambridge Univ. Press, Cambridge, 2004.
  5. B. Bidabad, A classification of complete Finsler manifolds through the conformal theory of curves, Differential Geom. Appl. 35 (2014), suppl., 350-360. https://doi.org/10.1016/j.difgeo.2014.04.010
  6. B. Bidabad and A. Shahi, On Sobolev spaces and density theorems on Finsler manifolds, AUT J. Math. Com. 1 (2020), no. 1, 37-45.
  7. B. Bidabad, A. Shahi, and M. Yar Ahmadi, Deformation of Cartan curvature on Finsler manifolds, Bull. Korean Math. Soc. 54 (2017), no. 6, 2119-2139. https://doi.org/10.4134/BKMS.b160780
  8. B. Bidabad and M. Sepasi, On a projectively invariant pseudo-distance in Finsler geometry, Int. J. Geom. Methods Mod. Phys. 12 (2015), no. 4, 1550043, 12 pp. https://doi.org/10.1142/S0219887815500437
  9. B. Bidabad and Z. Shen, Circle-preserving transformations in Finsler spaces, Publ. Math. Debrecen 81 (2012), no. 3-4, 435-445. https://doi.org/10.5486/PMD.2012.5317
  10. K. Carne, The Schwarzian derivative for conformal maps, J. Reine Angew. Math. 408 (1990), 10-33. https://doi.org/10.1515/crll.1990.408.10
  11. X. Cheng and Z. Shen, Finsler Geometry, Science Press Beijing, Beijing, 2012. https://doi.org/10.1007/978-3-642-24888-7
  12. M. Hashiguchi, On conformal transformations of Finsler metrics, J. Math. Kyoto Univ. 16 (1976), no. 1, 25-50. https://doi.org/10.1215/kjm/1250522956
  13. B. Osgood and D. Stowe, The Schwarzian derivative and conformal mapping of Riemannian manifolds, Duke Math. J. 67 (1992), no. 1, 57-99. https://doi.org/10.1215/S0012-7094-92-06704-4
  14. M. K. Sedaghat and B. Bidabad, On a class of complete Finsler manifolds, Internat. J. Math. 26 (2015), no. 11, 1550091, 9 pp. https://doi.org/10.1142/S0129167X15500913
  15. M. Sepasi and B. Bidabad, On a projectively invariant distance on Finsler spaces of constant negative Ricci scalar, C. R. Math. Acad. Sci. Paris 352 (2014), no. 12, 999-1003. https://doi.org/10.1016/j.crma.2014.09.011
  16. Z. Shen, Lectures on Finsler geometry, World Scientific Publishing Co., Singapore, 2001. https://doi.org/10.1142/9789812811622
  17. W. P. Thurston, Zippers and univalent functions, in The Bieberbach conjecture (West Lafayette, Ind., 1985), 185-197, Math. Surveys Monogr., 21, Amer. Math. Soc., Providence, RI, 1986. https://doi.org/10.1090/surv/021/15
  18. B. Y. Wu and Y. L. Xin, Comparison theorems in Finsler geometry and their applications, Math. Ann. 337 (2007), no. 1, 177-196. https://doi.org/10.1007/s00208-006-0031-9