• Title/Summary/Keyword: hole 형상

Search Result 312, Processing Time 0.027 seconds

Convergence Study on Composite Material of Unidirectional CFRP and SM 45C Sandwich Type that Differs in Stacking Angle (적층각도가 다른 단방향 CFRP와 SM45C샌드위치형 복합재료에 관한 융합적 연구)

  • Park, Jae-Woong;Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.7
    • /
    • pp.231-236
    • /
    • 2017
  • In this study, the inhomogeneous material composed of CFRP(carbon fiber reinforced plastic) and structural metal of SM45C is used for the light material. The finite element analysis on the basis of compact tension test was carried out by using the composite material for sandwich type bonded with the unidirectional CFRP that differs in fiber stacking angle at both sides with the core of SM 45C. CT test is the representative method to confirm the fracture behaviour due to crack in material under the load. The effect on crack and hole must be investigated in order to apply inhomogeneous material to mechanical structure. As the result of this study, the fracture behaviour by CT test of the composite material for sandwich was studied by simulation analysis. The sandwich composite of unidirectional CFRP with the stacking angle of [0/60/-60/0] has the superior strength and the maximum equivalent stress of about 182GPa.Also, the esthetic sense can be shown as the designed factor of shape with composite material is grafted onto the convergence technique.

Flow Characteristics with Distance between Solid Propellant Grain and Igniter (고체 추진제와 점화기 간 간격에 따른 유동 특성)

  • Kang, Donggi;Choi, Jaesung;Lee, Hyoungjin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.2
    • /
    • pp.96-107
    • /
    • 2018
  • Flow analysis using computational fluid dynamics was conducted to investigate the effect of the igniter flame caused by the gap between the igniter and the propellant grain in a solid rocket motor. Two propellant grain types were assumed; namely cylinder type (1 mm, 3 mm, and 5 mm gap) and the slot type. The slot type had two igniter hole locations. One was located at the small gap of the propellant grain, and the other one was located at the large gap. In the case of the cylinder type, the pressure in the igniter zone was higher with a thinner gap. Additionally, in the case of the cylinder type, the pressure difference between the igniter installed zone and the free volume was also higher as the gap became lower. The cylinder types were affected by the gap distance, but the slot types were not. Moreover, the results of the slot types were similar to the 5-mm gap case of the cylinder type.

Development of Air Spring Damper System(ASDS) (공기 스프링 댐퍼 시스템(ASDS)의 개발)

  • Kim, Dong Baek;Park, Heung Sik
    • Journal of the Society of Disaster Information
    • /
    • v.17 no.4
    • /
    • pp.829-838
    • /
    • 2021
  • Purpose: The Air Spring Damper System (ASDS) is proposed when existing concrete structures that have not been seismic resistant for economic and technical reasons or low-rise concrete structures that are difficult to earthquake. Method: To conduct a study on the damping force antigen in the kinetic equation of free vibration, we analyze whether this device has damping ability as a damper experimentally and theoretically, and examine the possibility of field application. Result: The air damper system is considered to be more economical than steel hysteresis dampers even if the number of dampers increases due to its easy manufacture and construction and low restrictions on shape, size, material, etc. Conclusion: In an air spring damper system, it is essential to reduce the diameter of the air inlet/outlet hole to improve the damping ratio, and in this case, if the diameter exceeds a certain lower limit, consideration of the compressibility of air is required, so further research is needed.

Macroscopic Visualization of Diesel Sprays with respect to Nozzle Hole Numbers and Injection Angles (분공수와 분사각의 영향에 따른 거시적 디젤 분무 가시화)

  • Yongjin Jung;Jinyoung Jang;Choongsik Bae
    • Journal of ILASS-Korea
    • /
    • v.29 no.1
    • /
    • pp.32-37
    • /
    • 2024
  • Macroscopic visualization of non-evaporating sprays was experimentally conducted to investigate spray tip penetration and spray angle under low-density conditions, corresponding to an early injection strategy. Furthermore, injectors with varying injection angles (146° and 70°) and numbers of holes (8 and 14) were employed to examine the impact of injector configuration. Compared to the baseline injector, 8H146, which has 8 holes and a 146° injection angle, the spray tip penetration of the 8H70 injector was found to be longer. This can be attributed to higher momentum due to a smooth flow field between the sac volume and the nozzle inlet, which is located closer to the injector tip centerline. The increase in velocity led to intense turbulence generation, resulting in a wider spray angle. Conversely, the spray tip penetration of the 14H70 injector was shorter than that of the 8H70 injector. The competition between increased velocity and decreased nozzle diameter influenced the spray tip penetration for the 14H70 injector; the increase in momentum, previously observed for the 8H70 injector, contributed to an increase in spray tip penetration, but a decrease in nozzle diameter could lead to a reduction in spray tip penetration. The spray angle for the 14H70 injector was similar to that of the 8H146 injector. Moreover, injection rate measurements revealed that the slope for a narrow injection angle (70°) was steeper than that for a wider injection angle during the injection event.

A Study on Movement of the Free Face During Bench Blasting (전방 자유면의 암반 이동에 관한 연구)

  • Lee, Ki-Keun;Kim, Gab-Soo;Yang, Kuk-Jung;Kang, Dae-Woo;Hur, Won-Ho
    • Explosives and Blasting
    • /
    • v.30 no.2
    • /
    • pp.29-42
    • /
    • 2012
  • Variables influencing the free face movement due to rock blasting include the physical and mechanical properties, in particular the discontinuity characteristics, explosive type, charge weight, burden, blast-hole spacing, delay time between blast-holes or rows, stemming conditions. These variables also affects the blast vibration, air blast and size of fragmentation. For the design of surface blasting, the priority is given to the safety of nearby buildings. Therefore, blast vibration has to be controlled by analyzing the free face movement at the surface blasting sites and also blasting operation needs to be optimized to improve the fragmentation size. High-speed digital image analysis enables the analyses of the initial movement of free face of rock, stemming optimality, fragment trajectory, face movement direction and velocity as well as the optimal detonator initiation system. Even though The high-speed image analysis technique has been widely used in foreign countries, its applications can hardly be found in Korea. This thesis aims at carrying out a fundamental study for optimizing the blast design and evaluation using the high-speed digital image analysis. A series of experimentation were performed at two large surface blasting sites with the rock type of shale and granite, respectively. Emulsion and ANFO were the explosives used for the study. Based on the digital images analysis, displacement and velocity of the free face were scrutinized along with the analysis fragment size distribution. In addition, AUTODYN, 2-D FEM model, was applied to simulate detonation pressure, detonation velocity, response time for the initiation of the free face movement and face movement shape. The result show that regardless of the rock type, due to the displacement and the movement velocity have the maximum near the center of charged section the free face becomes curved like a bow. Compared with ANFO, the cases with Emulsion result in larger detonation pressure and velocity and faster reaction for the displacement initiation.

Structural Evaluation Method to Determination Safe Working Load of Block Handling Lugs (블록 이동용 러그의 안전사용하중 결정에 관한 구조 평가법)

  • O-Hyun Kwon;Joo-Shin Park;Jung-Kwan Seo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.4
    • /
    • pp.363-371
    • /
    • 2023
  • To construct a ship, blocks of various sizes must be moved and erected . In this process, lugs are used such that they match the block fastening method and various functions suitable for the characteristics of each shipyard facility. The sizes and shapes of the lugs vary depending on the weight and shape of the block structures. The structure is reinforced by welding the doubling pads to compensate for insufficient rigidity around the holes where the shackle is fastened. As for the method of designing lugs according to lifting loading conditions, a simple calculation based on the beam theory and structural analysis using numerical modeling are performed. In the case of the analytical method, a standardized evaluation method must be established because results may differ depending on the type of element and modeling method. The application of this ambiguous methodology may cause serious safety problems during the process of moving and turning-over blocks. In this study , the effects of various parameters are compared and analyzed through numerical structural analysis to determine the modeling conditions and evaluation method that can evaluate the actual structural response of the lug. The modeling technique that represents the plate part and weld bead around the lug hole provides the most realistic behavior results. The modeling results with the same conditions as those of the actual lug where only the weld bead is connected to the main body of the lug, showed a lower ulimated strength compared with the results obtained by applying the MPC load. The two-dimensional shell element is applied to reduce the modeling and analysis time, and a safety working load was verified to be predicted by reducing the thickness of the doubling pad by 85%. The results of the effects of various parameters reviewed in the study are expected to be used as good reference data for the lug design and safe working load prediction.

The Effect of Surface Tension on Shear Wave Velocities according to Changes of Temperature and Degree of Saturation (온도와 포화도의 변화에 의한 표면장력이 전단파 속도에 미치는 영향)

  • Park, Jung-Hee;Kang, Min-Gu;Seo, Sun-Young;Lee, Jong-Sub
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.6C
    • /
    • pp.285-293
    • /
    • 2012
  • The surface tension, which is generated in the unsaturated soils, increases the stiffness of the soils. The objective of this study is to estimate the effect of the surface tension, which varies according to the temperature, on the shear wave velocity. Nine specimens, which have the different degree of saturation (0%, 2.5%, 5%, 10%, 20%, 40%, 60%, 80%, 100%), are prepared by using sand-silt mixtures. Experiments are carried out in a nylon cell designed for the measurement of shear waves. A pair of bender elements, which are used for the generation and detection of shear waves, is installed as a cross-hole type. The shear waves are continuously monitored and measured as the temperature of specimens decreases from $15^{\circ}C$ to $1^{\circ}C$. The results show that shear wave velocities of the fully saturated and fully dried specimens change a little bit as the temperatures of specimens decrease. However, the shear wave velocities of the specimens with the degree of saturations of 2.5%, 5%, 10%, 20%, 40%, 60% and 80% continuously increase as temperature decreases from $15^{\circ}C$ to $1^{\circ}C$. Furthermore, a fully saturated specimen is dried at the temperature of $70^{\circ}C$ in order to observe the shear waves according to degree of saturation. The shear wave velocities measured at the temperature of $70^{\circ}C$ are generally lower than those measured at temperature of $15^{\circ}C$. This study demonstrates that the dependence of shear wave velocities on the temperature according to the degree of saturation should be taken into account in both laboratory and field tests.

Three-Dimensional Vibration Analysis of Solid and Hollow Hemispheres Having Varying Thickness (변두께를 갖는 두꺼운 반구형 쉘과 반구헝체의 3차원적 진동해석)

  • 심현주;장경호;강재훈
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.2
    • /
    • pp.197-206
    • /
    • 2003
  • A three-dimensional (3-D) method of analysis is presented for determining the free vibration frequencies and mode shapes of solid and hollow hemispherical shells of revolution of arbitrary wall thickness having arbitrary constraints on their boundaries. Unlike conventional shell theories, which are mathematically two-dimensional (2-D), the present method is based upon the 3-D dynamic equations of elasticity. Displacement components μ/sub Φ/, μ/sub z/, and μ/sub θ/ in the meridional, normal, and circumferential directions, respectively, are taken to be sinusoidal in time, periodic in θ, and algebraic polynomials in the Φ and z directions. Potential (strain) and kinetic energies of the hemispherical shells are formulated, and the Ritz method is used to solve the eigenvalue problem, thus yielding upper bound values of the frequencies obtained by minimizing the frequencies. As the degree of the polynomials is increased, frequencies converge to the exact values. Novel numerical results are presented for solid and hollow hemispheres with linear thickness variation. The effect on frequencies of a small axial conical hole is also discussed. Comparisons are made for the frequencies of completely free, thick hemispherical shells with uniform thickness from the present 3-D Ritz solutions and other 3-D finite element ones.

Hydraulic Resistance Characteristics of Compacted Weathered Granite Soil by Rotating Cylinder Test and Image Analysis (영상처리기법과 회전식 수리저항성능 실험을 이용한 다짐화강풍화토의 수리저항특성 분석)

  • Kim, Young Sang;Lim, Jae Seong
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.7
    • /
    • pp.25-34
    • /
    • 2016
  • Recently, in Korea, problems related with unstability of slope or sinkhole in urban area due to erosion of compacted granite soil which was used as a backfill or embankment material have been treated as important issues. Small hole might develop inside of backfill area due to erosion of not only weathered granite soil but also clay, silt, fine sand size particles when underground water flows. Once erosion starts in a soil mass, erosion rate increases gradually to cause rapid destruction. In this study, a rotating cylinder test (RCT) was performed to evaluate the hydraulic resistance characteristics of compacted weathered granite soil under various relative densities and preconsolidation pressures. Meanwhile, an image analysis method was introduced to analyze radius of irregularly eroded sample. It was found that image analysis is an effective means of minimizing the error in calculating a critical shear stress and threshold shear stress on the irregularly eroded sample. Furthermore, in general, hydraulic resistance capacity increases with the increase of relative density and preconsolidation pressure.

Design and Verification of Shear Buckling Test Fixture for Composite Laminate (복합재 적층판의 전단좌굴시험을 위한 치구 설계 및 검증)

  • Park, Sung-Jun;Ko, Myung-Gyun;Kim, Dong-Gwan;Kim, Sang-Kuk;Moon, Chang-Oh;Kweon, Jin-Hwe;Choi, Jin-Ho
    • Composites Research
    • /
    • v.27 no.4
    • /
    • pp.158-167
    • /
    • 2014
  • Final goal of this research is to establish the database for correlation factors which connects the test and analysis results of shear buckling allowables for composite plate. To accomplish the goal, extensive test and analysis works are required. In this paper, as the first step, a frame-type fixture for shear buckling test was designed and validated through the test and analysis. Final configuration of the fixture were determined via parametric study on the effect of specimen size, cross-sectional dimensions, and number of fastening bolts on the shear buckling load. Results of the study showed the designed frame-type fixture successfully induces the shear buckling of composite plate. However, there were deviations between the test results and analysis results for ideal case under pure shear load, which were mainly caused by the difference in plate sizes for both cases. The difference were larger in the plates with larger hole and simply supported boundary condition. It is concluded from the results that while the designed fixture can be used for the clamped plates with acceptable accuracy, it shows larger difference in the simply supported plates.