• Title/Summary/Keyword: histone H3K4 methylation

Search Result 30, Processing Time 0.03 seconds

Histone methylation and transcription (히스톤 메틸화와 유전자 전사)

  • Kim, Ae-Ri
    • Journal of Life Science
    • /
    • v.17 no.4 s.84
    • /
    • pp.593-598
    • /
    • 2007
  • Amino acids of histone tail are covalently modified in eukaryotic cells. Lysine residues in histone H3 and H4 are methylated at three levels; mono-, di- or trimethylation. Methylation in histones is related with transcription of the genes in distinct pattern depending on lysine residues and methylated levels. Relation between transcription and methylation has been relatively well understood at three lysines H3K4, H3K9 and H3K36. H3K4 is methylated in active or potentially active chromatin and its methylation associates with active transcription. H3K9 is generally methylated in heterochromatin or repressed gene, but trimethylation of this lysine occur in actively transcribed genes also. Methylation at H3K36 generally correlates with active chromatin/transcription, but the correlation of its dimethylation with transcription is controversial. All together methylation patterns of individual lysine residues in histone relate with activation or repression of transcription and may provide distinctive roles in transcriptional regulation of the eukaryotic genes.

Histone H3 Lysine Methylation in Adipogenesis (Adipogenesis에서 히스톤 H3 lysine methylation)

  • Jang, Younghoon
    • Journal of Life Science
    • /
    • v.30 no.8
    • /
    • pp.713-721
    • /
    • 2020
  • Adipogenesis as a model system is needed to understand the molecular mechanisms of human adipocyte biology and the pathogenesis of obesity, diabetes, and other metabolic syndromes. Many relevant studies have been conducted with a focus on gene expression regulation and intracellular signaling relating to Peroxisome proliferator-activated receptor gamma (PPARγ) and CCAAT/enhancer-binding protein alpha (C/EBPα), which are master adipogenic transcription factors. However, epigenome regulation of adipogenesis by epigenomic modifiers or histone mutations is not fully understood. Histone methylation is one of the major epigenetic modifications on gene expression in mammals, and histone H3 lysine methylation (H3Kme) in particular implicates cell differentiation during various tissue and organ development. During adipogenesis, cell type-specific enhancers are marked by histone H3K4me1 with the active enhancer mark H3K27ac. Mixed-lineage leukemia 4 (MLL4) is a major H3K4 mono-methyltransferase on the adipogenic enhancers of PPARγ and C/EBPα loci. Thus, MLL4 is an important epigenomic modifier for adipogenesis. The repressive mark H3K27me3 is mediated by the enzymatic subunit Enhancer zeste homolog 2 (EZH2) of the polycomb repressive complex 2. EZH2-mediated H3K27 tri-methylation on the Wnt gene increases adipogenesis because WNT signaling is a negative regulator of adipogenesis. This review summarizes current knowledge about the epigenomic regulation of adipogenesis by histone H3 lysine methylation which fundamentally regulates gene expression.

Potential role of the histone chaperone, CAF-1, in transcription

  • Kim, Hye-Jin;Seol, Ja-Hwan;Cho, Eun-Jung
    • BMB Reports
    • /
    • v.42 no.4
    • /
    • pp.227-231
    • /
    • 2009
  • The eukaryotic genome forms a chromatin structure that contains repeating nucleosome structures. Nucleosome packaging is regulated by chromatin remodeling factors such as histone chaperones. The Saccharomyces cerevisiae H3/H4 histone chaperones, CAF-1 and Asf1, regulate DNA replication and chromatin assembly. CAF-1 function is largely restricted to non-transcriptional processes in heterochromatin, whereas Asf1 regulates transcription together with another H3/H4 chaperone, HIR. This study examined the role of the yeast H3/H4 histone chaperones, Asf1, HIR, and CAF-1 in chromatin dynamics during transcription. Unexpectedly, CAF-1 was recruited to the actively transcribed region in a similar way to HIR and Asf1. In addition, the three histone chaperones genetically interacted with Set2-dependent H3 K36 methylation. Similar to histone chaperones, Set2 was required for tolerance to excess histone H3 but not to excess H2A, suggesting that CAF-1, Asf1, HIR, and Set2 function in a related pathway and target chromatin during transcription.

Hypoxia suffocates histone demethylases to change gene expression: a metabolic control of histone methylation

  • Park, Hyunsung
    • BMB Reports
    • /
    • v.50 no.11
    • /
    • pp.537-538
    • /
    • 2017
  • Hypoxia affects various physiological and pathophyological processes. Hypoxia changes the expression of hypoxia-responsive genes through two main pathways. First, hypoxia activates transcription factors (TF) such as Hypoxia-inducible Factor (HIF). Second, hypoxia decreases the activity of Jumonji C domain-containing histone demethylases (JMJDs) that require $O_2$ and ${\alpha}$-Ketoglutarate (${\alpha}$-KG) as substrates. The JMJDs affect gene expression through their regulation of active or repressive histone methylations. Profiling of H3K4me3, H3K9me3, and H3K27me3 under both normoxia and hypoxia identified 75 TFs whose binding motifs were significantly enriched in the methylated regions of the genes. TFs showing similar binding strengths to their target genes might be under the 'metabolic control' which changes histone methylation and gene expression by instant changing catalytic activities of resident histone demethylases.

Effects of Paf1 complex components on H3K4 methylation in budding yeast (출아효모에서 Paf1 복합체의 구성원들이 H3의 네번째 라이신의 메틸화에 미치는 영향)

  • Oh, Jun-Soo;Lee, Jung-Shin
    • Korean Journal of Microbiology
    • /
    • v.52 no.4
    • /
    • pp.487-494
    • /
    • 2016
  • In Saccharomyces cerevisiae, Paf1 complex consists of five proteins, and they are structurally and functionally well conserved in yeast, fruit fly, plants, and human. With binding to RNA polymerase II from transcription start site to termination site, Paf1 complex functions as a platform for recruiting many types of transcription factors to RNA polymerase II. Paf1 complex contributes to H2B ubiquitination and indirectly influences on H3K4 di- and tri-methylation by histone crosstalk. But the individual effects of five components in Paf1 complex on these two histone modifications including H2B ubiquitination and H3K4 methylation largely remained to be identified. In this study, we constructed the single-gene knockout mutants of each Paf1 complex component and observed H3K4 mono-, di-, and trimethylation as well as H2B ubiquitination in these mutants. Interestingly, in each ${\Delta}paf1$, ${\Delta}rtf1$, and ${\Delta}ctr9$ strain, we observed the dramatic defect in H3K4 monomethylation, which is independent of H2B ubiquitination, as well as H3K4 di- and trimethylation. However, the protein level of Set1, which is methyltransferase for H3K4, was not changed in these mutants. This suggests that Paf1 complex may directly influence on H3K4 methylation by directly regulating the activity of Set1 or the stability of Set1 complex in an H2B ubiquitination independent manner.

Epigenetic Regulation by Modification of Histone Methylation in Embryonic Stem Cells (히스톤 메틸화 변형을 통한 배아줄기세포의 후성 유전학적 조절)

  • Ha, Yang-Hwa;Kim, Young-Eun;Park, Jeong-A;Park, Sang-Kyu;Lee, Young-Hee
    • Development and Reproduction
    • /
    • v.15 no.4
    • /
    • pp.273-279
    • /
    • 2011
  • Epigenetic regulation is a phenomenon that changes the gene function without changing the underlying DNA sequences. Epigenetic status of chromosome is regulated by mechanisms such as histone modification, DNA modification, and RNAi silencing. In this review, we focused on histone methylation for epigenetic regulation in ES cells. Two antagonizing multiprotein complexes regulate methylation of histones to guide expression of genes in ES cells. The Polycomb repressive complex 2 (PRC2), including EED, EZH2, and SUZ12 as core factors, contributes to gene repression by increasing trimethylation of H3K27 (H3K27me3). In contrast, the Trithorax group (TrxG) complex including MLL is related to gene activation by making H3K4me3. PRC2 and TrxG accompany a variety of accessory proteins. Most prominent feature of epigenetic regulation in ES cells is a bivalent state in which H3K27me3 and H3K4me3 appear simultaneously. Concerted regulation of PRC2, TrxG complex, and H3K4- or H3K27-specific demethylases activate expression of pluripotency-related genes and suppress development-related genes in ES cells. Modified balance of the regulators also enables ES cells to efficiently differentiate to a variety of cells upon differentiating signals. More detailed insights on the epigenetic regulators and their action will lead us to better understanding and use of ES cells for future application.

The effect of Swd2's binding to Set1 on the dual functions of Swd2 in Saccharomyces cerevisiae (Saccharomyces cerevisiae의 Swd2와 Set1의 결합이 Swd2의 이중적인 기능에 미치는 영향)

  • Park, Shinae;Lee, Jung-Shin
    • Korean Journal of Microbiology
    • /
    • v.53 no.4
    • /
    • pp.286-291
    • /
    • 2017
  • In eukaryotic cells, histone modification is an important mechanism to regulate the chromatin structure. The methylation of the fourth lysine on histone H3 (H3K4) by Set1 complex is one of the various well-known histone modifications. Set1 complex has seven subunits including Swd2, which is known to be important for H2B ubiquitination dependent on H3K4 methylation. Swd2 was reported to regulate Set1's methyltransferase activity by binding to near RNA recognition motif (RRM) domain of Set1 and to act as a component of CPF (Cleavage and Polyadenylation Factors) complex involved in RNA 3' end processing. According to the recent reports, two functions of Swd2 work independently of each other and the lethality of Swd2 knockout strain was known to be caused by its function as a component of CPF complex. In this study, we found that Swd2 could influence the Set1's stability as well as histone methyltransferase activity through the association with RRM domain of Set1. Also, we found that ${\Delta}swd2$ mutant bearing truncated-Set1, which cannot interact with Swd2, lost its lethality and grew normally. These results suggest that the dual functions of Swd2 in H3K4 methylation and RNA 3' end processing are not independent in Saccharomyces cerevisiae.

Identification of histone methyltransferase RE-IIBP target genes in leukemia cell line

  • Son, Hye-Ju;Kim, Ji-Young;Rhee, Sang-Myung;Seo, Sang-Beom
    • Animal cells and systems
    • /
    • v.16 no.4
    • /
    • pp.289-294
    • /
    • 2012
  • Histone methylation has diverse functions including transcriptional regulation via its lysine or arginine residue methylation. Studies indicate that deregulation of histone methylation is linked to human cancers including leukemia. Histone H3K27 methyltrnasferase response element II binding protein (RE-IIBP), as a transcriptional repressor to target gene IL-5, interacts with HDAC and is over-expressed in leukemia patient samples. In this study, we have identified that hematopoiesis-related genes GATA1 and HOXA9 are down-regulated by RE-IIBP in K562 and 293T cells. Transient reporter analysis revealed that GATA1 transcription was repressed by RE-IIBP. On the other hand, HOXA9 and PBX-related homeobox gene MEIS1 was up-regulated by RE-IIBP. These results suggest that RE-IIBP might have a role in hematopoiesis or leukemogenesis by regulating the transcription of target genes, possibly via its H3K27 methyltransferase activity.

Proper Activity of Histone H3 Lysine 4 (H3K4) Methyltransferase Is Required for Morphogenesis during Zebrafish Cardiogenesis

  • Kim, Jun-Dae;Kim, Eunmi;Koun, Soonil;Ham, Hyung-Jin;Rhee, Myungchull;Kim, Myoung-Jin;Huh, Tae-Lin
    • Molecules and Cells
    • /
    • v.38 no.6
    • /
    • pp.580-586
    • /
    • 2015
  • While increasing evidence indicates the important function of histone methylation during development, how this process influences cardiac development in vertebrates has not been explored. Here, we elucidate the functions of two histone H3 lysine 4 (H3K4) methylation enzymes, SMYD3 and SETD7, during zebrafish heart morphogenesis using gene expression profiling by whole mount in situ hybridization and antisense morpholino oligonucleotide (MO)-based gene knockdown. We find both smyd3 and setd7 are highly expressed within developing zebrafish heart and knock-down of these genes led to severe defects in cardiac morphogenesis without altering the expressions pattern of heart markers, including cmlc2, vmhc, and amhc. Furthermore, double knock-down by coinjection of smyd3 and setd7 MOs caused the synergistic defects in heart development. As similar to knock-down effect, overexpression of these genes also caused the heart morphogenesis defect in zebrafish. These results indicate that histone modifying enzymes, SMYD3 and SETD7, appear to function synergistically during heart development and their proper functioning is essential for normal heart morphogenesis during development.

Inactivation of the genes involved in histone H3-lysine 4 methylation abates the biosynthesis of pigment azaphilone in Monascus purpureus

  • Balakrishnan, Bijinu;Lim, Yoon Ji;Suh, Jae-Won;Kwon, Hyung-Jin
    • Journal of Applied Biological Chemistry
    • /
    • v.62 no.2
    • /
    • pp.157-165
    • /
    • 2019
  • Di- and tri-methylation of lysine 4 on histone H3 (H3K4me2 and H3K4me3, respectively) are epigenetic markers of active genes. Complex associated with Set1 (COMPASS) mediates these H3K4 methylations. The involvement of COMPASS activity in secondary metabolite (SM) biosynthesis was first demonstrated with an Aspergillus nidulans cclA knockout mutant. The cclA knockout induced the transcription of two cryptic SM biosynthetic gene clusters, leading to the production of the cognate SM. Monascus spp. are filamentous fungi that have been used for food fermentation in eastern Asia, and the pigment Monascus azaphione (MAz) is their main SM. Monascus highly produces MAz, implying that the cognate biosynthetic genes are highly active in transcription. In the present study, we examined how COMPASS activity modulates MAz biosynthesis by inactivating Monascus purpureus cclA (Mp-cclA) and swd1 (Mp-swd1). For both ${\Delta}Mp-cclA$ and ${\Delta}Mp-swd1$, a reduction in MAz production, accompanied by an abated cell growth, was observed. Suppression of MAz production was more effective in an agar culture than in the submerged liquid culture. The fidelity of the ${\Delta}Mp-swd1$ phenotypes was verified by restoring the WT-like phenotypes in a reversion recombinant mutant, namely, trpCp: Mp-swd1, that was generated from the ${\Delta}Mp-swd1$ mutant. Real-time quantitative Polymerase chain reaction analysis indicated that the transcription of MAz biosynthetic genes was repressed in the ${\Delta}Mp-swd1$ mutant. This study demonstrated that MAz biosynthesis is under the control of COMPASS activity and that the extent of this regulation is dependent on growth conditions.