References
- Bannister, A. J., R. Schneider, F. A. Myers, A. W. Thorne, C. Crane-Robinson and T. Kouzarides. 2005. Spatial distribution of di- and tri-methyl lysine 36 of histone H3 at active genes. J. Biol. Chem. 280, 17732-17736 https://doi.org/10.1074/jbc.M500796200
- Bannister, A. J., P. Zegerman, J. F. Partridge, E. A. Miska, J. O. Thomas, R. C. Allshire and T. Kouzarides. 2001. Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 410, 120-124 https://doi.org/10.1038/35065138
- Berger, S. L. 2002. Histone modifications in transcriptional regulation. Curr. Opin. Genet. Dev. 12, 142-148 https://doi.org/10.1016/S0959-437X(02)00279-4
- Bernstein, B. E., E. L. Humphrey, R. L. Erlich, R. Schneider, P. Bouman, J. S. Liu, T. Kouzarides and S. L. Schreiber. 2002. Methylation of histone H3 Lys 4 in cod¬ing regions of active genes. Proc. Natl. Acad. Sci. U. S. A. 99, 8695-8700 https://doi.org/10.1073/pnas.082249499
- Briggs, S. D., M. Bryk, B. D. Strahl, W. L. Cheung, J. K. Davie, S. Y. Dent, F. Winston and C. D. Allis. 2001. Histone H3 lysine 4 methylation is mediated by Set1 and required for cell growth and rDNA silencing in Saccharomyces cerevisiae. Genes Dev. 15, 3286-3295 https://doi.org/10.1101/gad.940201
- Jenuwein, T. and C. D. Allis. 2001. Translating the histone code. Science 293, 1074-1080 https://doi.org/10.1126/science.1063127
- Kim, A. and A. Dean. 2004. Developmental stage differences in chromatin sub-domains of the b-globin locus. Proc. Natl. Acad. Sci. U.S. A. 101, 7028-7033 https://doi.org/10.1073/pnas.0307985101
- Kim, A. and A. Dean. 2003. A human globin enhancer causes both discrete and widespread alterations in chromatin structure. Mol. Cell. Biol. 23, 8099-8109 https://doi.org/10.1128/MCB.23.22.8099-8109.2003
- Kim, A., C. M. Kiefer and A. Dean. 2007. Distinctive Signatures of Histone Methylation in Transcribed Coding and Noncoding Human {beta}-Globin Sequences. Mol. Cell. Biol. 27, 1271-1279 https://doi.org/10.1128/MCB.01684-06
- Kornberg, R. D. and Y. Lorch. 1999. Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome. Cell 98, 285-294 https://doi.org/10.1016/S0092-8674(00)81958-3
- Krogan, N. J., M. Kim, A. Tong, A. Golshani, G. Cagney, V. Canadien, D. P. Richards, B. K. Beattie, A. Emili, C. Boone, A. Shilatifard, S. Buratowski and J. Greenblatt. 2003. Methylation of histone H3 by Set2 in Saccharomyces cerevisiae is linked to transcriptional elongation by RNA polymerase II. Mol. Cell. Biol. 23, 4207-4218 https://doi.org/10.1128/MCB.23.12.4207-4218.2003
- Lachner, M., D. O'Carroll, S. Rea, K. Mechtler and T. Jenuwein. 2001. Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 410, 116-120 https://doi.org/10.1038/35065132
- Landry, J., A. Sutton, T. Hesman, J. Min, R. M. Xu, M. Johnston and R. Sternglanz. 2003. Set2-catalyzed methylation of histone H3 represses basal expression of GAL4 in Saccharomyces cerevisiae. Mol. Cell. Biol. 23, 5972-5978 https://doi.org/10.1128/MCB.23.17.5972-5978.2003
- Lee, D. Y., J. P. Northrop, M. H. Kuo and M. R. Stallcup. 2006. Histone H3 lysine 9 methyltransferase G9a is a transcriptional coactivator for nuclear receptors. J. Biol. Chem. 281, 8476-8485 https://doi.org/10.1074/jbc.M511093200
- Li, B., L. Howe, S. Anderson, J. R. r. Yates and J. L. Workman. 2003. The Set2 histone methyltransferase functions through the phosphorylated carboxyl-terminal domain of RNA polymerase II. J. Biol. Chem. 278, 8897-8903 https://doi.org/10.1074/jbc.M212134200
- Litt, M. D., M. Simpson, M. Gaszner, C. D. Allis and G. Felsenfeld. 2001. Correlation between histone lysine methylation and developmental changes at the chicken beta-globin locus. Science 293, 2453-2455 https://doi.org/10.1126/science.1064413
- Luger, K., A. W. Mader, R. K. Richmond, D. F. Sargent and T. J. Richmond. 1997. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389, 251-260 https://doi.org/10.1038/38444
- Martin, C. and Y. Zhang. 2005. The diverse functions of histone lysine methylation. Nat. Rev. Mol. Cell. Biol. 6, 838-849 https://doi.org/10.1038/nrm1761
- Milne, T. A., Y. Dou, M. E. Martin, H. W. Brock, R. G. Roeder and J. L. Hess. 2005. MLL associates specifically with a subset of transcriptionally active target genes. Proc. Natl. Acad. Sci. USA. 102, 14765-14770 https://doi.org/10.1073/pnas.0503630102
- Moril1on, A., N. Karabetsou, A. Nair and J. Mellor. 2005. Dynamic lysine methylation on histone H3 defines the regulatory phase of gene transcription, Mol. Cell 18, 723-734 https://doi.org/10.1016/j.molcel.2005.05.009
- Ng, H. H., F. Robert, R. A. Young and K. Struhl. 2003. Targeted recruitment of Set1 histone methylase by elongating Pol II provides a localized mark and memory of recent transcriptional activity. Mol. Cell 11, 709-719 https://doi.org/10.1016/S1097-2765(03)00092-3
- Rea, S., F. Eisenhaber, D. O'Carroll, B. D. Strahl, Z. W. Sun, M. Schmid, S. Opravil, K. Mechtler, C. P. Ponting, C. D. Allis and T. Jenuwein. 2000. Regulation of chromatin structure by site-specific histone H3 methyltransferases, Nature 406, 593-539 https://doi.org/10.1038/35020506
- Ruthenburg, A. J., C. D. Allis and J. Wysocka. 2007. Methylation of lysine 4 on histone H3: intricacy of writing and reading a single epigenetic mark. Mol. Cell 25, 15-30 https://doi.org/10.1016/j.molcel.2006.12.014
- Santos-Rosa, H., R. Schneider, A. J. Bannister, J. Sherriff, B. E. Bernstein, N. C. Emre, S. L. Schreiber, J. Mellor and T. Kouzarides. 2002. Active genes are tri-methylated at K4 of histone H3. Nature 419, 407-411 https://doi.org/10.1038/nature01080
- Schneider, R., A. J. Bannister, F. A. Myers, A. W. Thorne, C. Crane-Robinson and T. Kouzarides. 2004. Histone H3 lysine 4 methylation patterns in higher eukaryotic genes. Nat. Cell. Biol. 6, 73-77 https://doi.org/10.1038/ncb1076
- Sims, R. J., 3rd., K. Nishioka and D. Reinberg. 2003. Histone lysine methylation: a signature for chromatin function. Trends Genet. 19, 629-639 https://doi.org/10.1016/j.tig.2003.09.007
- Sims, R. J. r. and D. Reinberg. 2006. Histone H3 Lys 4 methylation: caught in a bind? Genes Dev. 20, 2779-2786 https://doi.org/10.1101/gad.1468206
- Strahl, B. D., P. A. Grant, S. D. Briggs, Z. W. Sun, J. R. Bone, J. A. Caldwell, S. Mollah, R. G. Cook, J. Shabanowitz, D. F. Hunt and C. D. Allis. 2002. Set2 is a nucleosomal histone H3-selective methyltransferase that mediates transcriptional repression. Mol. Cell. Biol. 22, 1298-1306 https://doi.org/10.1128/MCB.22.5.1298-1306.2002
- Strahl, B. D., R. Ohba, R. G. Cook and C. D. Allis. 1999. Methylation of histone H3 at lysine 4 is highly conserved and correlates with transcriptionally active nuclei in Tetrahymena. Proc. Natl. Acad. Sci. U. S. A. 96, 14967-14972 https://doi.org/10.1073/pnas.96.26.14967
- Sun, X. J., J. Wei, X. Y. Wu, M. Hu, L. Wang, H. H. Wang, Q. H. Zhang, S. J. Chen, Q. H. Huang and Z. Chen. 2005. Identification and characterization of a novel human histone H3 lysine 36-specific methyltransferase. J. Biol. Chem. 280, 35261-35271 https://doi.org/10.1074/jbc.M504012200
- Tachibana, M., K. Sugimoto, M. Nozaki, J. Ueda, T. Ohta, M. Ohki, M. Fukuda, N. Takeda, H. Niida, H. Kato and Y. Shinkai. 2002. G9a histone methyltransferase plays a dominant role in euchromatic histone H3 lysine 9 methylation and is essential for early embryogenesis. Genes Dev. 16, 1779-1791 https://doi.org/10.1101/gad.989402
- Vakoc, C. R., S. A. Mandat, B. A. Olenchock and G. A. Blobel. 2005. Histone H3 lysine 9 methylation and HP1gamma are associated with transcription elongation through mammalian chromatin. Mol. Cell 19, 381-391 https://doi.org/10.1016/j.molcel.2005.06.011
- Vakoc, C. R., M. M. Sachdeva, H. Wang and G. A. Blobel. 2006. Profile of histone lysine methylation across transcribed mammalian chromatin. Mol. Cell. Biol. 26, 9185-9195 https://doi.org/10.1128/MCB.01529-06
- van Attikum, H. and S. M. Gasser. 2005. The histone code at DNA breaks: a guide to repair? Nat. Rev. Mol. Cell. Biol. 6, 757-765 https://doi.org/10.1038/nrm1737
- Xiao, T., H. Hall, K. O. Kizer, Y. Shibata, M. C. Hall, C. H. Borchers and B. D. Strahl. 2003. Phosphorylation of RNA polymerase II CTD regulates H3 methylation in yeast. Genes Dev. 17, 654-663 https://doi.org/10.1101/gad.1055503