References
- Bannister, A.J. and Kouzarides, T. 2011. Regulation of chromatin by histone modifications. Cell Res. 21, 381-395. https://doi.org/10.1038/cr.2011.22
- Dover, J., Schneider, J., Twaiah-Boateng, M.A., Wood, A., Dean, K., Johnston, M., and Shilatifard, A. 2002. Methylation of histone H3 by COMPASS requires ubiquitination of histone H2B by Rad6. J. Biol. Chem. 277, 28368-28371. https://doi.org/10.1074/jbc.C200348200
- Jaehning, J.A. 2010. The Paf1 complex: platform or player in RNA polymerase II transcription? Biochim. Biophys. Acta. 1799, 5-6.
- Kim, J. and Roeder, R.G. 2009. Direct Bre1-Paf1 complex interactions and RING finger-independent Bre1-Rad6 interactions mediate histone H2B ubiquitylation in yeast. J. Biol. Chem. 284, 20582-20592. https://doi.org/10.1074/jbc.M109.017442
- Kornberg, D. and Lorch, Y. 1999. Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome. Cell 98, 285-294. https://doi.org/10.1016/S0092-8674(00)81958-3
- Krogan, N.J., Dover, J., Wood, A., Schneider, J., Heidt, J., Boateng, M.A., Dean, K., Ryan, O.W., Golshani, A., Johnston, M., et al. 2003. The Paf1 complex is required for histone H3 methylation by COMPASS and Dot1p: linking transcriptional elongation to histone methylation. Mol. Cell. 11, 721-729. https://doi.org/10.1016/S1097-2765(03)00091-1
- Lee, J.S., Shukla, A., Schneider, J., Swanson, S.K., Washburn, M.P., Florens, L., Bhaumik, S.R., and Shilatifard, A. 2007. Histone crosstalk between H2B monoubiquitination and H3 methylation mediated by COMPASS. Cell 131, 1084-1096. https://doi.org/10.1016/j.cell.2007.09.046
- Lee, J.S., Smith, E., and Shilatifard, A. 2010. The language of histone crosstalk. Cell 142, 682-685. https://doi.org/10.1016/j.cell.2010.08.011
- Li, B., Carey, M., and Workman, J.L. 2007. The role of chromatin during transcription. Cell 128, 707-719. https://doi.org/10.1016/j.cell.2007.01.015
- Mosiman, C., Hausmann, G., and Basler, K. 2006. Parafibromin/Hyrax activates Wnt/Wg target gene transcription by direct association with beta-catenin/Armadillo. Cell 125, 327-341. https://doi.org/10.1016/j.cell.2006.01.053
- Mosimann, C., Hausmann, G., and Basler, K. 2009. The role of Parafibromin/Hyrax as a nuclear Gli/Ci-interacting protein in Hedgehog target gene control. Mech. Dev. 126, 394-405. https://doi.org/10.1016/j.mod.2009.02.002
- Mueller, C.L. and Jaehning, J.A. 2002. Ctr9, Rtf1, and Leo1 are components of the Paf1/RNA polymerase II complex. Mol. Cell. Biol. 22, 1971-1980. https://doi.org/10.1128/MCB.22.7.1971-1980.2002
- Newey, P.J., Bowl, M.R., and Thakker, R.V. 2009. Parafibromin-functional insights J. Intern. Med. 266, 84-98. https://doi.org/10.1111/j.1365-2796.2009.02107.x
- Ng, H.H., Robert, F., Young, R.A., and Struhl, K. 2003a. Targeted recruitment of Set1 histone methylase by elongating Pol II provides a localized mark and memory of recent transcriptional activity. Mol. Cell. 11, 709-719. https://doi.org/10.1016/S1097-2765(03)00092-3
- Ng, H.H., Dole, S., and Struhl, K. 2003b. The Rtf1 component of the Paf1 transcriptional elongation complex is required for ubiquitination of histone H2B. J. Biol. Chem. 278, 33625-33628. https://doi.org/10.1074/jbc.C300270200
- Nordick, K., Hoffman, M.G., Betz, J.L., and Jaehning, J.A. 2008. Direct interactions between the Paf1 complex and a cleavage and polyadenylation factor are revealed by dissociation of paf1 from RNA polymerase II. Eukaryot. Cell. 7, 1158-1167. https://doi.org/10.1128/EC.00434-07
- Penheiter, K.L., Washburn, T.M., Porter, S.E., Hoffman, M.G., and Jaehning, J.A. 2005. A posttranscriptional role for the yeast Paf1-RNA polymerase II complex is revealed by identification of primary targets. Mol. Cell 20, 213-223. https://doi.org/10.1016/j.molcel.2005.08.023
- Peterson, C.L. 2002. Chromatin remodeling: nucleosomes bulging at the seams. Curr. Biol. 12, R245-247. https://doi.org/10.1016/S0960-9822(02)00782-0
- Piro, A.S., Mayekar, M.K., Warner, M.H., Davis, C.P., and Arndt, K.M. 2012. Small region of Rtf1 protein can substitute for complete Paf1 complex in facilitating global histone H2B ubiquitylation in yeast. Proc. Natl. Acad. Sci. USA 109, 10837-10842. https://doi.org/10.1073/pnas.1116994109
- Schneider, J., Wood, A., Lee, J.S., Schuster, R., Dueker, J., Maguire, C., Swanson, S.K., Florens, L., Washburn, M.P., and Shilatifard, A. 2005. Molecular regulation of histone H3 trimethylation by COMPASS and the regulation of gene expression. Mol. Cell. 19, 849-856. https://doi.org/10.1016/j.molcel.2005.07.024
- Shilatifard, A. 2006. Chromatin modifications by methylation and ubiquitination: implications in the regulation of gene expression Annu. Rev. Biochem. 75, 243-269. https://doi.org/10.1146/annurev.biochem.75.103004.142422
- Shilatifard, A. 2012. The COMPASS family of histone H3K4 methylases: mechanisms of regulation in development and disease pathogenesis. Annu. Rev. Biochem. 81, 65-95. https://doi.org/10.1146/annurev-biochem-051710-134100
- Smith, E., Lin, C., and Shilatifard, A. 2011. The super elongation complex (SEC) and MLL in development and disease. Genes Dev. 25, 661-672. https://doi.org/10.1101/gad.2015411
- Squazzo, S.L., Costa, P.J., Lindstrom, D.L., Kumer, K.E., Simic, R., Jennings, J.L., Link, A.J., Arndt, K.M., and Hartzog, G.A. 2002. The Paf1 complex physically and functionally associates with transcription elongation factors in vivo. EMBO J. 21, 1764-1774. https://doi.org/10.1093/emboj/21.7.1764
- Tomson, B.N., Crisucci, E.M., Heisler, L.E., Gebbia, M., Nislow, C., and Arndt, K.M. 2013. Effects of the Paf1 complex and histone modifications on snoRNA 3'-end formation reveal broad and locus-specific regulation. Mol. Cell. Biol. 33, 170-182. https://doi.org/10.1128/MCB.01233-12
- Tomson, B.N., Davis, C.P., Warner, M.H., and Arndt, K.M. 2011. Identification of a role for histone H2B ubiquitination in noncoding RNA 3'-end formation through mutational analysis of Rtf1 in Saccharomyces cerevisiae. Genetics 188, 273-289. https://doi.org/10.1534/genetics.111.128645
- Warner, M.H., Roinick, K.L., Arndt, K.M. 2007. Rtf1 is a multifunctional component of the Paf1 complex that regulates gene expression by directing cotranscriptional histone modification. Mol. Cell. Biol. 27, 6103-6115. https://doi.org/10.1128/MCB.00772-07
- Wood, A., Schneider, J., Dover, J., Johnston, M., and Shilatifard, A. 2003. The Paf1 complex is essential for histone monoubiquitination by the Rad6-Bre1 complex, which signals for histone methylation by COMPASS and Dot1p. J. Biol. Chem. 278, 34739-34742. https://doi.org/10.1074/jbc.C300269200
- Xiao, T., Kao, C.F., Krogan, N.J., Sun, Z.W., Greenblatt, J.F., Osley, M.A., and Strahl, B.D. 2005. Histone H2B ubiquitination is associated with elongating RNA polymerase II. Mol. Cell. Biol. 25, 637-651. https://doi.org/10.1128/MCB.25.2.637-651.2005
- Zhang, Y., Sikes, M.L., Beyer, A.L., and Schneider, D.A. 2009. The paf1 complex is required for efficient transcription elongation by RNA polymerase I Proc. Natl. Acad. Sci. USA 106, 2153-2158. https://doi.org/10.1073/pnas.0812939106