DOI QR코드

DOI QR Code

Proper Activity of Histone H3 Lysine 4 (H3K4) Methyltransferase Is Required for Morphogenesis during Zebrafish Cardiogenesis

  • Kim, Jun-Dae (School of Life Science and Biotechnology (BK 21 plus program), Kyungpook National University) ;
  • Kim, Eunmi (School of Life Science and Biotechnology (BK 21 plus program), Kyungpook National University) ;
  • Koun, Soonil (School of Life Science and Biotechnology (BK 21 plus program), Kyungpook National University) ;
  • Ham, Hyung-Jin (School of Life Science and Biotechnology (BK 21 plus program), Kyungpook National University) ;
  • Rhee, Myungchull (Department of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University) ;
  • Kim, Myoung-Jin (School of Life Science and Biotechnology (BK 21 plus program), Kyungpook National University) ;
  • Huh, Tae-Lin (School of Life Science and Biotechnology (BK 21 plus program), Kyungpook National University)
  • Received : 2015.02.25
  • Accepted : 2015.03.16
  • Published : 2015.06.30

Abstract

While increasing evidence indicates the important function of histone methylation during development, how this process influences cardiac development in vertebrates has not been explored. Here, we elucidate the functions of two histone H3 lysine 4 (H3K4) methylation enzymes, SMYD3 and SETD7, during zebrafish heart morphogenesis using gene expression profiling by whole mount in situ hybridization and antisense morpholino oligonucleotide (MO)-based gene knockdown. We find both smyd3 and setd7 are highly expressed within developing zebrafish heart and knock-down of these genes led to severe defects in cardiac morphogenesis without altering the expressions pattern of heart markers, including cmlc2, vmhc, and amhc. Furthermore, double knock-down by coinjection of smyd3 and setd7 MOs caused the synergistic defects in heart development. As similar to knock-down effect, overexpression of these genes also caused the heart morphogenesis defect in zebrafish. These results indicate that histone modifying enzymes, SMYD3 and SETD7, appear to function synergistically during heart development and their proper functioning is essential for normal heart morphogenesis during development.

Keywords

References

  1. Arrowsmith, C.H., Bountra, C., Fish, P.V., Lee, K., and Schapira, M. (2012). Epigenetic protein families: a new frontier for drug discovery. Nat. Rev. Drug Discov. 11, 384-400. https://doi.org/10.1038/nrd3674
  2. Barnett, P., van den Boogaard, M., and Christoffels, V. (2012). Localized and temporal gene regulation in heart development. Curr. Top. Dev. Biol. 100, 171-201. https://doi.org/10.1016/B978-0-12-387786-4.00004-X
  3. Bhaumik, S.R., Smith, E., and Shilatifard, A. (2007). Covalent modifications of histones during development and disease pathogenesis. Nat. Struct. Mol. Biol. 14, 1008-1016. https://doi.org/10.1038/nsmb1337
  4. Black, J.C., Van, Rechem, C., and Whetstine, J.R. (2012). Histone lysine methylation dynamics: establishment, regulation, and biological impact. Mol. Cell 48, 491-507. https://doi.org/10.1016/j.molcel.2012.11.006
  5. Campaner, S., Spreafico, F., Burgold, T., Doni, M., Rosato, U., Amati, B., and Testa, G. (2011). The methyltransferase Set7/9 (Setd7) is dispensable for the p53-mediated DNA damage response in vivo. Mol. Cell 43, 681-688. https://doi.org/10.1016/j.molcel.2011.08.007
  6. Cayuso, Mas, J., Noel, E.S., and Ober, E.A. (2011). Chromatin modification in zebrafish development. Methods Cell Biol. 104, 401-428. https://doi.org/10.1016/B978-0-12-374814-0.00022-7
  7. Del Rizzo, P.A., and Trievel, R.C. (2011). Substrate and product specificities of SET domain methyltransferases. Epigenetics 6, 1059-1067. https://doi.org/10.4161/epi.6.9.16069
  8. Dillon, S.C., Zhang, X., Trievel, R.C., and Cheng, X. (2005). The SETdomain protein superfamily: protein lysine methyltransferases. Genome Biol. 6, 227. https://doi.org/10.1186/gb-2005-6-8-227
  9. Esteve, P.O., Chin, H.G., Benner, J., Feehery, G.R., Samaranayake, M., Horwitz, G.A., Jacobsen, S.E., and Pradhan, S. (2009). Regulation of DNMT1 stability through SET7-mediated lysine methylation in mammalian cells. Proc. Natl. Acad. Sci. USA106, 5076-5081. https://doi.org/10.1073/pnas.0810362106
  10. Foreman, K.W., Brown, M., Park, F., Emtage, S., Harriss, J., Das, C., Zhu, L., Crew, A., Arnold, L., Shaaban, S., and Tucker, P. (2011). Structural and functional profiling of the human histone methyltransferase SMYD3. PLoS One 6, e22290. https://doi.org/10.1371/journal.pone.0022290
  11. Frank, B., Hemminki, K., Wappenschmidt, B., Klaes, R., Meindl, A., Schmutzler, R.K., Bugert, P., Untch, M., Bartram, C.R., and Burwinkel, B. (2006). Variable number of tandem repeats polymorphism in the SMYD3 promoter region and the risk of familial breast cancer. Int. J. Cancer 118, 2917-2918. https://doi.org/10.1002/ijc.21696
  12. Fujii, T., Tsunesumi, S., Yamaguchi, K., Watanabe, S., and Furukawa, Y. (2011). Smyd3 is required for the development of cardiac and skeletal muscle in zebrafish. PLoS One 6, e23491. https://doi.org/10.1371/journal.pone.0023491
  13. Hamamoto, R., Furukawa, Y., Morita, M., Iimura, Y., Silva, F.P., Li, M., Yagyu, R., and Nakamura, Y. (2004). SMYD3 encodes a histone methyltransferase involved in the proliferation of cancer cells. Nat. Cell Biol. 6, 731-740. https://doi.org/10.1038/ncb1151
  14. Hamamoto, R., Silva, F.P., Tsuge, M., Nishidate, T., Katagiri, T., Nakamura, Y., and Furukawa, Y. (2006). Enhanced SMYD3 expression is essential for the growth of breast cancer cells. Cancer Sci. 97, 113-118. https://doi.org/10.1111/j.1349-7006.2006.00146.x
  15. Helin, K., and Dhanak, D. (2013). Chromatin proteins and modifications as drug targets. Nature 502, 480-488. https://doi.org/10.1038/nature12751
  16. Huang, C.J., Tu, C.T., Hsiao, C.D., Hsieh, F.J., and Tsai, H.J. (2003). Germ-line transmission of a myocardium-specific GFP transgene reveals critical regulatory elements in the cardiac myosin light chain 2 promoter of zebrafish. Dev. Dyn. 228, 30-40. https://doi.org/10.1002/dvdy.10356
  17. Kim, B., Kang, S., and Kim, S.J. (2012a). Differential promoter methylation and histone modification contribute to the brain specific expression of the mouse Mbu-1 gene. Mol. Cells 34, 433-437. https://doi.org/10.1007/s10059-012-0182-3
  18. Kim, Y.S., Kim, M.J., Koo, T.H., Kim, J.D., Koun, S., Ham, H.J., Lee, Y.M., Rhee, M., Yeo, S.Y., and Huh, T.L. (2012b). Histone deacetylase is required for the activation of Wnt/${\beta}$-catenin signaling crucial for heart valve formation in zebrafish embryos. Biochem. Biophys. Res. Commun. 423, 140-146. https://doi.org/10.1016/j.bbrc.2012.05.098
  19. Kim, J.D., Kim, H.J., Koun, S., Ham, H.J., Kim, M.J., Rhee, M., and Huh, T.L. (2014). Zebrafish Crip2 plays a critical role in atrioventricular valve development by downregulating the expression of ECM genes in the endocardial cushion. Mol. Cells 37, 406-411. https://doi.org/10.14348/molcells.2014.0072
  20. Lehnertz, B., Rogalski, J.C., Schulze, F.M., Yi, L., Lin, S., Kast, J., and Rossi, F.M. (2011). p53-dependent transcription and tumor suppression are not affected in Set7/9-deficient mice. Mol. Cell 43, 673-680. https://doi.org/10.1016/j.molcel.2011.08.006
  21. Oudhoff, M.J., Freeman, S.A., Couzens, A.L., Antignano, F., Kuznetsova, E., Min, P.H., Northrop, J.P., Lehnertz, B., Barsyte-Lovejoy, D., Vedadi, M., et al. (2013). Control of the hippo pathway by Set7-dependent methylation of Yap. Dev. Cell 26, 188-194. https://doi.org/10.1016/j.devcel.2013.05.025
  22. Pradhan, S., Chin, H.G., Esteve, P.O., and Jacobsen, S.E. (2009). SET7/9 mediated methylation of non-histone proteins in mammalian cells. Epigenetics 4, 383-387. https://doi.org/10.4161/epi.4.6.9450
  23. Proserpio, V., Fittipaldi, R., Ryall, J.G., Sartorelli, V., and Caretti, G. (2013). The methyltransferase SMYD3 mediates the recruitment of transcriptional cofactors at the myostatin and c-Met genes and regulates skeletal muscle atrophy. Genes Dev. 27, 1299-1312. https://doi.org/10.1101/gad.217240.113
  24. Sese, B., Barrero, M.J., Fabregat, M.C., Sander, V. and Izpisua Belmonte, J.C. (2013). SMYD2 is induced during cell differentiation and participates in early development. Int. J. Dev. Biol. 57, 357-364. https://doi.org/10.1387/ijdb.130051ji
  25. Silva, F.P., Hamamoto, R., Kunizaki, M., Tsuge, M., Nakamura, Y., and Furukawa, Y. (2008). Enhanced methyltransferase activity of SMYD3 by the cleavage of its N-terminal region in human cancer cells. Oncogene 27, 2686-2692. https://doi.org/10.1038/sj.onc.1210929
  26. Sims, R.J., and Reinberg, D. (2004). From chromatin to cancer: a new histone lysine methyltransferase enters the mix. Nat. Cell Biol. 6, 685-687. https://doi.org/10.1038/ncb0804-685
  27. Tao, Y., Neppl, R.L., Huang, Z.P., Chen, J., Tang, R.H., Cao, R., Zhang, Y., Jin, S.W., and Wang, D.Z. (2011). The histone methyltransferase Set7/9 promotes myoblast differentiation and myofibril assembly. J. Cell Biol. 194, 551-565. https://doi.org/10.1083/jcb.201010090
  28. Thisse, C., and Thisse, B. (2008). High-resolution in situ hybridization to whole-mount zebrafish embryos. Nat. Protoc. 3, 59-69. https://doi.org/10.1038/nprot.2007.514
  29. Van Aller, G.S., Reynoird, N., Barbash, O., Huddleston, M., Liu, S., Zmoos, A.F., McDevitt, P., Sinnamon, R., Le, B., Mas, G., et al. (2012). Smyd3 regulates cancer cell phenotypes and catalyzes histone H4 lysine 5 methylation. Epigenetics 7, 340-343. https://doi.org/10.4161/epi.19506
  30. Wamstad, J.A., Alexander, J.M., Truty, R.M., Shrikumar, A., Li, F., Eilertson, K.E., Ding, H., Wylie, J.N., Pico, A.R., Capra, J.A., et al. (2012). Dynamic and coordinated epigenetic regulation of developmental transitions in the cardiac lineage. Cell 151, 206-220. https://doi.org/10.1016/j.cell.2012.07.035
  31. Wang, H., Cao, R., Xia, L., Erdjument-Bromage, H., Borchers, C., Tempst, P., and Zhang, Y. (2001). Purification and functional characterization of a histone H3-lysine 4-specific methyltransferase. Mol. Cell 8, 1207-1217. https://doi.org/10.1016/S1097-2765(01)00405-1
  32. Wang, Q.T. (2012). Epigenetic regulation of cardiac development and function by polycomb group and trithorax group proteins. Dev. Dyn. 241, 1021-1033. https://doi.org/10.1002/dvdy.23796
  33. Westerfield, M. (1993). The Zebrafish book : a guide for the laboratory use of zebrafish (Brachydanio rerio). (Eugene, USA: University of Oregon Press).
  34. Yang, J., Huang, J., Dasgupta, M., Sears, N., Miyagi, M., Wang, B., Chance, M.R., Chen, X., Du, Y., Wang, Y., et al. (2010). Reversible methylation of promoter-bound STAT3 by histonemodifying enzymes. Proc. Natl. Acad. Sci. USA 107, 21499-21504. https://doi.org/10.1073/pnas.1016147107

Cited by

  1. Spatiotemporal expression pattern of the zebrafish aquaporin 8 family during early developmental stages vol.21, pp.1, 2016, https://doi.org/10.1016/j.gep.2016.06.001
  2. Transcriptional Regulation of Heart Development in Zebrafish vol.3, pp.2, 2016, https://doi.org/10.3390/jcdd3020014
  3. The histone methyltransferase Setd7 promotes pancreatic progenitor identity vol.143, pp.19, 2016, https://doi.org/10.1242/dev.136226
  4. Histone lysine methylation and congenital heart disease: From bench to bedside (Review) vol.40, pp.4, 2017, https://doi.org/10.3892/ijmm.2017.3115
  5. Identification and Characterizations of Novel, Selective Histone Methyltransferase SET7 Inhibitors by Scaffold Hopping- and 2D-Molecular Fingerprint-Based Similarity Search vol.23, pp.3, 2018, https://doi.org/10.3390/molecules23030567
  6. NSD2 promotes ventricular remodelling mediated by the regulation of H3K36me2 pp.15821838, 2019, https://doi.org/10.1111/jcmm.13961
  7. Role of epigenetics in zebrafish development vol.718, pp.None, 2015, https://doi.org/10.1016/j.gene.2019.144049
  8. Loss of the Polycomb group protein Rnf2 results in derepression of tbx -transcription factors and defects in embryonic and cardiac development vol.9, pp.None, 2015, https://doi.org/10.1038/s41598-019-40867-1
  9. Roles and regulation of histone methylation in animal development vol.20, pp.10, 2015, https://doi.org/10.1038/s41580-019-0151-1
  10. The SMYD3 methyltransferase promotes myogenesis by activating the myogenin regulatory network vol.9, pp.1, 2015, https://doi.org/10.1038/s41598-019-53577-5
  11. Histones, Their Variants and Post-translational Modifications in Zebrafish Development vol.8, pp.None, 2020, https://doi.org/10.3389/fcell.2020.00456
  12. Cisplatin nephrotoxicity is induced via poly(ADP-ribose) polymerase activation in adult zebrafish and mice vol.318, pp.5, 2015, https://doi.org/10.1152/ajpregu.00130.2019
  13. The Lysine Methylase SMYD3 Modulates Mesendodermal Commitment during Development vol.10, pp.5, 2015, https://doi.org/10.3390/cells10051233