• Title/Summary/Keyword: highly efficient

Search Result 2,182, Processing Time 0.028 seconds

Simplified Bilayer White Phosphorescent Organic Light-Emitting Diodes

  • Lee, Jonghee;Sung, Woo Jin;Joo, Chul Woong;Cho, Hyunsu;Cho, Namsung;Lee, Ga-Won;Hwang, Do-Hoon;Lee, Jeong-Ik
    • ETRI Journal
    • /
    • v.38 no.2
    • /
    • pp.260-264
    • /
    • 2016
  • We report on highly efficient blue, orange, and white phosphorescent organic light-emitting diodes consisting only two organic layers. Hole transporting 4, 4,' 4"-tris (N-carbazolyl)triphenylamine (TcTa) and electron transporting 2-(diphenylphosphoryl) spirofluorene (SPPO1) are used as an emitting host for orange light-emitting bis(3-benzothiazol-2-yl-9-ethyl-9H-carbazolato) (acetoacetonate) iridium ((btc)2(acac)Ir) and blue light-emitting iridium(III)bis(4,6-difluorophenyl-pyridinato-N,C2') picolinate (FIrpic) dopant, respectively. Combining these two orange and blue light-emitting layers, we successfully demonstrate highly efficient white PHOLEDs while maintaining Commission internationale de l'eclairage coordinates of (x = 0.373, y = 0.443). Accordingly, we achieve a maximum external quantum, current, and power efficiencies of 12.9%, 30.3 cd/A, and 30.0 lm/W without out-coupling enhancement.

An Analysis of the Patent for Highly Efficient Absorption Refrigeration System (고효율 흡수식 냉동기의 특허기술 분석연구)

  • 심윤희;박윤철;배영문
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.4
    • /
    • pp.332-339
    • /
    • 2004
  • A technical analysis was conducted to predict the development trend for the highly efficient absorption type refrigeration system. The study was based on a submitted patent during January 1981 and December 2000 in Korea, Japan and America. The total number of extruded patents from the registered database was 24,822 and the filtering process makes the reduction of the data number to 3,510. Technical development of Japan for the absorption type refrigeration system is prominent compared to the other country due to approximately 75% of the patents coming from Japan. When the patent is divided into two categories, the patent for component technology for the refrigeration system makes up 75% and the refrigerating type technology 25% of the patents. This shows technical development for the system component is advanced compared to the technology development for the system type. When the patents are classified by nationality of patent applicants, foreigners contribute up to 33% of the patents in Korea. However, Japan's case shows the 99% of the patents are invented by the Japanese. If the patents are classified to the International Patent Classification, most of the data for the absorption type refrigeration system belongs to IPC F25B.

A Study on the Application Plan of Air-Conditioning and Renewable Complex Systems in the Small Schools. (소규모 학교의 냉난방 및 신재생에너지복합시스템 적용방안에 관한 연구)

  • Kim, Ji-Yeon;Park, Hyo-Soon;Hong, Sung-Hee;Kim, Seong-Sil;Hur, Inn-Ku;Suh, Seung-Jik
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.946-951
    • /
    • 2009
  • The research aims to study a new, optimum and renewable energy application method that can cover the minimum energy and operation costs within a range of school budgets. By deriving the optimum application method, it is expected to maximize the cooling/heating and water heating energy saving efficiencies for educational facilities. Therefore, this research carried out a study on the new/renewable energy utilization technique diffusion expansion method and the optimum method. As a result, the first optimum plan was introduced with the multi-type geothermal heat pump 174kW + solar heat collector $94\;m^2$ + highly efficient electronic cooling/heating device (EHP) 249.4kW. On the other hand, the second optimum plan was induced as the multi-type geothermal heat pump 255.2kW + highly efficient electronic cooling/heating device (EHP) 168.2kW.

  • PDF

A Study on the Application Plan of Air-Conditioning and New and Renewable Systems in the Large High Schools (대규모 고등학교의 냉난방 및 신재생에너지시스템 적용방안에 관한 연구)

  • Kim, Ji-Yeon;Park, Hyo-Soon;Kim, Seong-Sil;Suh, Seung-Jik
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.10
    • /
    • pp.564-574
    • /
    • 2009
  • The study is conducted to study a new, optimum and new and renewable energy application method that can cover the minimum energy and operation costs within a range of school budgets. By deriving the optimum application method, it is expected to maximize the cooling/heating and hot water supply energy saving efficiencies for educational facilities. Therefore, this research implemented a study on the new and renewable energy utilization technique diffusion expansion method and the optimum method. As a result, the first optimum plan was introduced with the multi-type geothermal heat pump 475.6 kW+highly efficient electronic cooling/heating device(EHP) 545.2 kW. On the other hand, the second optimum plan was induced as the multi-type geothermal heat pump 261kW+solar heat collector $240\;m^2$+highly efficient electronic cooling/heating device(EHP) 759.8 kW.

A Highly Efficient Broadband Class-E Power Amplifier with Nonlinear Shunt Capacitance

  • Dang-Duy, Ninh;Ha-Van, Nam;Jeong, Daesik;Kim, Dong Hwan;Seo, Chulhun
    • Journal of electromagnetic engineering and science
    • /
    • v.17 no.4
    • /
    • pp.221-227
    • /
    • 2017
  • A new approach to designing a broadband and highly efficient class-E power amplifier based on nonlinear shunt capacitance analysis is proposed. The nonlinear shunt capacitance method accurately extracts optimum class-E power amplifier parameters, including an external shunt capacitance and an output impedance, at different frequencies. The dependence of the former parameter on the frequency is considered to select an optimal value of external shunt capacitor. Then, upon determining the latter parameter, an output matching network is optimized to obtain the highest efficiency across the bandwidth of interest. An analytical approach is presented to design the broadband class-E power amplifier of a MOSFET transistor. The proposed method is experimentally verified by a 140-170 MHz class-E power amplifier design with maximum added power efficiency of 82% and output power of 34 dBm.

Simple and Highly Efficient Synthesis of [$^{11}C$]methionine Using Solid-Phase Extraction Method (고정상 추출법을 이용한 효율적인 [$^{11}C$]methionine의 합성)

  • Lim, Sung-Jae;Moon, Woo-Yeon;Choi, Jae-Chil;Cho, Shee-Man;Oh, Seung-Jun
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.12 no.3
    • /
    • pp.181-183
    • /
    • 2008
  • We developed simple and highly efficient synthesis method for [$^{11}C$]methionine using solid-phase extraction method. For synthesis, we used C18 cartridge. [$^{11}C$]methionine was synthesized on C18 cartridge according to the solid-phase [$^{11}C$]methylation of precursor L-homocysteine thiolactone hydrochloride. The radiochemical yields of [$^{11}C$]methionine was $48.9{\pm}7.93%$ decay corrected (results of 30 syntheses, mean$\pm$SD), with average production higher than 180 mCi. This procedure showed high yield and simple synthesis of [$^{11}C$]methionine.

  • PDF

A Study on the Development Trend of Explosion and Combustion Energy (폭발.연소 에너지의 개발 방향에 관한 연구)

  • Shin, Chang-Yong;Ahn, Myung-Seog;Jo, Myung-Chan
    • Explosives and Blasting
    • /
    • v.27 no.2
    • /
    • pp.56-60
    • /
    • 2009
  • In view of physics, energy is defined as the ability to work. The use of natural gas and nuclear power have been increased since 1980s to replace fossil fuels such as coal and petroleum. Recently, solar energy, wind power, tidal power, and geothermal energy have been considered as promising alternative energy sources to overcome environmental pollution. However, their energy efficiencies are much lower than those of chemical energies such as nuclear power, explosive, and petroleum gas. In this study, the present situation of the green energy was reviewed to seek out the way to overcome the limit of the environmental (alternative) energy. Also, purification, application and development trend of the highly efficient alternative energy sources were investigated.

Highly Efficient Three Wavelength WOLEDs by Controlling of Electron-Transfer

  • Park, Ho-Cheol;Park, Jong-Wook;Oh, Seong-Geu
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.10
    • /
    • pp.2299-2302
    • /
    • 2009
  • By controlling the number of electrons transferred to the emitting layer, highly efficient three-wavelength WOLEDs were fabricated. Such WOLEDs are different from those made using simple stacking of RGB emitting layers in that the movement distribution of electrons transferred to emitting layer could be adjusted using the difference in LUMO energy level and that lights of all 3 wavelengths could be emitted through appropriate arrangement of RGB emitting layers. WOLED device with the structure of m-MTDTA (40 nm)/NPB (10 nm)/ Coumarin6 doped $Alq_3$ (3%) (8 nm)/ Rubrene doped NPB (5%) (15 nm)/NPB (2 nm)/ DPVBi (20 nm)/$Alq_3$ (20 nm)/LiF (1 nm)/Al (200 nm) showed high luminance efficiency of 8.9 cd/A and color purity of (0.31, 0.40). In addition, WOLED device with the thickness of non-doped NPB layer increased from 2 nm to 3 nm to increase blue light emission showed a luminance efficiency of 7.6 cd/A and color purity of (0.28, 0.36).

Efficient Removal of Arsenic Using Magnetic Multi-Granule Nanoclusters

  • Lee, Seung-Ho;Cha, Jinmyung;Sim, Kyunjong;Lee, Jin-Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.2
    • /
    • pp.605-609
    • /
    • 2014
  • Magnetic multi-granule nanoclusters (MGNCs) were investigated as an inexpensive means to effectively remove arsenic from aqueous environment, particularly groundwater sources consumed by humans. Various size MGNCs were examined to determine both their capacity and efficiency for arsenic adsorption for different initial arsenic concentrations. The MGNCs showed highly efficient arsenic adsorption characteristics, thereby meeting the allowable safety limit of $10{\mu}g/L$ (ppb), prescribed by the World Health Organization (WHO), and confirming that 0.4 g and 0.6 g of MGNCs were sufficient to remove 0.5 mg/L and 1.0 mg/L of arsenate ($AsO_4{^{3-}}$) from water, respectively. Adsorption isotherm models for the MGNCs were used to estimate the adsorption parameters. They showed similar parameters for both the Langmuir and Sips models, confirming that the adsorption process in this work was active at a region of low arsenic concentration. The actual efficiency of arsenate removal was then tested against 1 L of artificial arsenic-contaminated groundwater with an arsenic concentration of 0.6 mg/L in the presence of competing ions. In this case, only 1.0 g of 100 nm MGNCs was sufficient to reduce the arsenic concentrations to below the WHO permissible safety limit for drinking water, without adjusting the pH or temperature, which is highly advantageous for practical field applications.

A Control Algorithm for Highly Efficient Operation of Auxiliary Power Unit in a Series Hybrid Electric Bus (직렬형 하이브리드 버스에서 보조동력장치의 고효율 작동을 위한 제어 알고리즘)

  • 함윤영;송승호;민병문;노태수;이재왕;이현동;김철수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.5
    • /
    • pp.170-175
    • /
    • 2003
  • A control algorithm is developed for highly efficient operation of auxiliary power unit (APU) that consists of a diesel engine and a directly coupled induction generator in series hybrid electric Bus (SHEB). In a series hybrid configuration the APU supplies the electric power needed for maintaining the state of charge (SOC) of the battery unit in various conditions of vehicle operation. As the rotational speed of generator does not depend on the vehicle speed, an optimized operation of engine-generator unit based on the efficiency map of each component can be achieved. The output torque of diesel engine can be controlled by the amount of fuel injection, and the power converted from mechanical to electrical energy can be adjusted by generate control unit (GCU) using the decoupling vector control of torque and flux. As for the given reference of the generating power, the multiply of speed and torque, many combinations of operating speed and torque are possible. The algorithm decides the new operating point based on the engine efficiency map and generator characteristic curve. During the transition of operating points, the speed controller saturation is avoided using variable limit and filtering of generator torque reference. A test rig and SHEB consist of a 1.5L diesel engine and a 30kw induction generator are constructed by Hyundai Motor Company.