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We report on highly efficient blue, orange, and white 
phosphorescent organic light-emitting diodes consisting 
only two organic layers. Hole transporting 4, 4,’ 4’’-tris  
(N-carbazolyl)triphenylamine (TcTa) and electron 
transporting 2-(diphenylphosphoryl) spirofluorene 
(SPPO1) are used as an emitting host for orange light-
emitting bis(3-benzothiazol-2-yl-9-ethyl-9H-carbazolato) 
(acetoacetonate) iridium ((btc)2(acac)Ir) and blue light-
emitting iridium(III)bis(4,6-difluorophenyl-pyridinato-
N,C2’) picolinate (FIrpic) dopant, respectively. Combining 
these two orange and blue light-emitting layers, we 
successfully demonstrate highly efficient white PHOLEDs 
while maintaining Commission internationale de 
l'éclairage coordinates of (x = 0.373, y = 0.443). Accordingly, 
we achieve a maximum external quantum, current, and 
power efficiencies of 12.9%, 30.3 cd/A, and 30.0 lm/W 
without out-coupling enhancement. 
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I. Introduction 

Organic light-emitting diodes (OLEDs) are attracting 
widespread attention as next-generation low-cost, high-
efficiency thin-film electroluminescent devices for both flat 
panel displays and lighting applications. While conventional 
fluorescent tubes and market-pioneering white inorganic light-
emitting diodes are currently holding most of the market share 
in the lighting industry, white OLEDs (WOLEDs) could be a 
very competitive candidate due to their unique advantages, 
including low operating voltages, high power efficiencies, and 
suitability for processing on flexible substrates. WOLEDs for 
solid-state lighting applications require high efficiency, high 
color rendering index, high color stability, and appropriate 
color temperature [1]–[5]. 

There are various methods for highly efficient WOLEDs. In 
particular, to use phosphorescent materials is one effective way 
to get high efficiency in WOLEDs due to their ability to 
efficiently utilize both singlet and triplet excitons. However, 
phosphorescent OLEDs (PHOLEDs) require a complicated 
device structure with numerous organic layers to improve 
charge injection, transport, balance, and exciton confinement. 
Since the complicated structures increase the manufacturing 
cost, simplified device structures are desirable for OLED 
applications. 

In this work, we have demonstrated a simplified white 
PHOLED consisting of only two organic layers; that is, a hole 
transporting–type orange emitting layer (EML) and an electron 
transporting–type blue EML. We believe that this simple 
design concept can provide a new avenue for achieving high-
performance WOLEDs for lighting applications. 
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II. Experiments 

As shown in Fig. 1, three simplified PHOLEDs in the 
current study (Device A-C) were fabricated as follows:  
• Device A (blue) – indium tin oxde (ITO)/TcTa (50 nm)/ 

SPPO1: FIrpic (50 nm, 10%)/LiF/Al 
• Device B (orange) – ITO/TcTa: (btc)2(acac)Ir (50 nm, 7%)/ 

SPPO1 (50 nm)/LiF/Al 
• Device C (white) – ITO/TcTa: (btc)2(acac)Ir (50 nm, 7%)/ 

SPPO1: FIrpic (50 nm, 10%)/LiF/Al 
The hole-transporting material, TcTa, with a high triplet level 

(2.85 eV), and the high-lying lowest unoccupied molecular 
orbital (LUMO) energy level of 2.4 eV, which can efficiently 
confine the triplet energy of the orange phosphorescent emitter 
((btc)2(acac)Ir) and electrons, is selected as the hole-
transport/host of orange EML [6], [7]. The electron-
transporting material SPPO1 with a high triplet level (2.90 eV) 
and the low-lying highest occupied molecular orbital (HOMO) 
energy level of 6.5 eV, which can efficiently confine the triplet 
energy of the blue phosphorescent emitter (FIrpic) and holes, is 
selected as the hole-transport/host of blue EML. The chemical 
structures of the materials and energy level diagrams used in 
this study are shown in Figs. 2 and 3 (the energy levels are 
taken from the literature) [8]–[10], respectively. 
 

 

Fig. 1. Device structures of blue (device A), orange (device B),
and white (device C) PHOLEDs tested in this study. 
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Fig. 2. Chemical structures for materials tested in this study. 
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Fig. 3. Energy level diagrams for materials tested in this study. 
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ITO was cleaned using a standard oxygen plasma treatment. 
The OLED grade materials were purchased and used without 
further purification. All organic layers were deposited in a high 
vacuum chamber below 5 × 10–7 Torr, and thin LiF and Al 
films were deposited as a cathode electrode. The OLEDs were 
transferred directly from a vacuum into an inert environment 
glove-box, where they were encapsulated using a UV-curable 
epoxy and a glass cap with a moisture getter. The 
electroluminescence spectrum was measured using a Minolta 
CS-1000. The current–voltage (J–V) and luminescence-voltage 
(L-V) characteristics were measured using a current/voltage 
source/measure unit (Keithley 238) and a Minolta CS-100, 
respectively. 

III. Results and Discussion 

To develop efficient PHOLEDs, the effective confinement of 
both the charge carriers and the triplet excitons is necessary. By 
stacking two organic layers with different charge-transporting 
properties, the charge carriers (holes and electrons) are 
accumulated at the interface of TcTa and SPPO1. Furthermore, 
the high-lying LUMO level of TcTa and the low-lying HOMO 
of SPPO1 level help to confine the charge carriers. Therefore, 
the effective hole/electron recombination could be achieved, as 
is shown in Fig. 3. 

Figure 4 shows the current density-voltage-luminance (J-V-
L) curves of the PHOLEDs (devices A–C). To obtain more 
efficient WOLEDs, particularly to achieve high luminance 
efficacy for solid-state lighting application, it is very desirable 
that the driving voltage of the WOLEDs be lowered. The turn-
on voltages of devices A, B, and C are approximately 3.0 V. In 
particular, the relatively low turn-on voltage (3.2 V at 1 cd/m2) 
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Fig. 4. Current density-voltage-luminescence-voltage (J-V-L) 
characteristics of devices A–C. 
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Fig. 5. EL spectra of devices A–C at driving current of 10 mA/cm2.
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of the white PHOLED (device C) with only two layers is 
noticeable because it is almost similar in value to that of the 
complicated conventional white PHOLEDs. This could be 
explained by the following: (a) the acceptable low-lying 
HOMO energy level (5.7 eV) and the high hole mobility of 
TcTa for hole carrier and (b) the adequate high-lying LUMO 
energy level (2.8 eV) and the high electron mobility of SPPO1 
for the hole carrier [8], [11]. The driving voltages at 100 cd/m2 
of devices A, B, and C are 5.8 V, 4.1 V, and 6.0 V, respectively. 
The maximum luminance values of 7,108 cd/m2, 16,410 cd/m2, 
and 18,330 cd/m2 were achieved for devices A–C. 

The electroluminescence (EL) spectra at a driving current 
density of 10 mA/cm2 for devices A–C are shown in Fig. 5. 
The EL spectra of devices A and B exhibited peak wavelengths 
at 472 nm and 559 nm, respectively. These emissions 
correspond to the peak wavelengths of the EL spectra of the 
single-color OLEDs using the FIrpic and (btc)2(acac)Ir, 
respectively. For device C, we could easily find the white EL 
emission consisting of blue (FIrpic) and orange ((btc)2(acac)Ir) 
emissions, by which we mean that the simplified white 

 

Fig. 6. External quantum, current, luminance efficiency vs. 
luminance characteristics of devices A–C. 
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PHOLED was successfully demonstrated with only two 
organic layers. The CIE coordinates and correlated color 
temperature (CCT) of WOLEDs (device C) at a driving current 
density of 10 mA/cm2 are (0.373, 0.48) and 4,512 K, 
respectively. 

The external quantum, current, and luminance efficiencies of 
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the emitted light in the forward direction of the WOLEDs 
versus luminance are plotted in Fig. 6. The quite high peak 
external quantum efficiency of 12.3% (device A), and 10.6% 
(device B) are indicating a successful effective confinement of 
both the charge carriers and the triplet excitons by stacking two 
organic layers with different charge-transporting properties. 
Finally, maximum external quantum, current, and power 
efficiencies of simplified white PHOLEDs (device C) were 
achieved without any out-coupling enhancement — 12.9%, 
30.3 cd/A, and 30.0 lm/W, respectively. The reduced efficiency 
at a high luminance region (that is, roll-off phenomenon) for 
blue (A) and white (C) OLED comes from a poor electrical 
optimization (triplet-triplet annihilation (TTA) or triplet-
polaron annihilation (TPA)) and low charge carrier balance in 
the FIrpic-based blue EML [11]–[13]. The external quantum, 
current, and power efficiencies of simplified white PHOLEDs 
(device C) at a luminance of 1,000 cd/m2 was reduced to 8.6%, 
20.3 cd/A, and 7.8 lm/W, respectively. This could be resolved 
by further device engineering such as an optimization of 
doping ratio or a use of a host mixing structure; especially, for 
the blue layer. 

IV. Conclusion 

We have demonstrated bilayer phosphorescent white 
OLEDs with a configuration of ITO/TcTa: orange 
dopant/SPPO1: blue dopant/LiF/Al. These simplified 
structures are also applicable to orange and blue monochromic 
OLEDs with common phosphorescent dopants. Efficient 
performance of the simplified bilayer devices is attributed to 
direct hole/electron injection and transport on the triplet 
dopants. This concept indicates a possible new direction to 
fabricate simplified OLEDs with competitive performance.  
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